RAD52 promotes single strand annealing at resected DNA DSBs

Borowiec, JA., Orlic-Milacic, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 74

This document contains 1 reaction (see Table of Contents)

https://www.reactome.org
RAD52 promotes single strand annealing at resected DNA DSBs

Stable identifier: R-HSA-5686642

Type: transition

Compartments: nucleoplasm

RAD52 promotes annealing of 3’ ssDNA overhangs at resected DNA double strand breaks (DSBs) through complementary regions. The complementarity between the two 3’ ssDNA overhangs at resected DNA DSBs exists if 3’ ssDNA overhangs contain direct repeats. While single strand annealing (SSA) requires significant homology between the annealed sequences it is nonetheless mutagenic. The parts of two 3’ overhanging DNA single strands at resected DSBs that lie 3’ to the annealed regions become displaced as flaps and subsequently excised. This results in the deletion (loss) of the DNA sequence lying between the two regions of homology used for SSA, as well as the deletion of one of the repeats used for annealing (Parsons et al. 2000, Van Dyck et al. 2001, Singleton et al. 2002, Stark et al. 2004, Mansour et al. 2008).

Literature references

Editions

<table>
<thead>
<tr>
<th>Editions</th>
<th>Authors, Edited</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-12</td>
<td>Orlic-Milacic, M.</td>
<td>Borowiec, JA.</td>
</tr>
<tr>
<td>2015-06-12</td>
<td>Authored, Edited</td>
<td>Reviewed</td>
</tr>
</tbody>
</table>

https://www.reactome.org