ChREBP activates metabolic gene expression

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

22/10/2019
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 70

This document contains 1 pathway and 4 reactions (see Table of Contents)
ChREBP activates metabolic gene expression

Stable identifier: R-MMU-163765

Compartments: nucleoplasm, cytosol, endoplasmic reticulum membrane

Inferred from: ChREBP activates metabolic gene expression (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.

The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp
Transcriptional activation of Citrate lyase monomer gene by ChREBP:MLX

Location: ChREBP activates metabolic gene expression

Stable identifier: R-MMU-163770

Type: omitted

Compartments: nucleoplasm, cytosol

Inferred from: Transcriptional activation of Citrate lyase monomer gene by ChREBP:MLX (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.

The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp
Transcriptional activation of FAS monomer gene by ChREBP:MLX

Location: ChREBP activates metabolic gene expression

Stable identifier: R-MMU-163733

Type: omitted

Compartments: nucleoplasm, cytosol

Inferred from: Transcriptional activation of FAS monomer gene by ChREBP:MLX (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.

The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp
Transcriptional activation of Acetyl-CoA carboxylase by ChREBP:MLX

Location: ChREBP activates metabolic gene expression

Stable identifier: R-MMU-163743

Type: omitted

Compartments: nucleoplasm, cytosol

Inferred from: Transcriptional activation of Acetyl-CoA carboxylase by ChREBP:MLX (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.

The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/parologue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp
Transcriptional activation of GP-acyl transferase gene by ChREBP:MLX

Location: ChREBP activates metabolic gene expression

Stable identifier: R-MMU-163748

Type: omitted

Compartments: nucleoplasm, endoplasmic reticulum membrane

Inferred from: Transcriptional activation of GP-acyl transferase gene by ChREBP:MLX (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.

The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/parologue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp
Table of Contents

Introduction 1

ChREBP activates metabolic gene expression 2

Transcriptional activation of Citrate lyase monomer gene by ChREBP:MLX 3

Transcriptional activation of FAS monomer gene by ChREBP:MLX 4

Transcriptional activation of Acetyl-CoA carboxylase by ChREBP:MLX 5

Transcriptional activation of GP-acyl transferase gene by ChREBP:MLX 6

Table of Contents 7