BioPAX pathway converted from "NOTCH1 PEST domain mutants coactivator complex binds CDK8:CCNC" in the Reactome database.
LEFT-TO-RIGHT
NOTCH1 PEST domain mutants coactivator complex binds CDK8:CCNC
MAML is expected to recruit CDK8 to NICD1 PEST domain mutants like it recruits CDK8 to wild-type NICD1 (Fryer et al. 2004).
Authored: Orlic-Milacic, M, 2013-01-04
Reviewed: Haw, R, 2013-02-10
Edited: Jassal, B, 2013-01-09
NOTCH1 PEST Domain Mutants Coactivator Complex
Reactome DB_ID: 2220989
nucleoplasm
GENE ONTOLOGY
GO:0005654
NICD1 PEST domain mutants:RBPJ:SNW1
Reactome DB_ID: 2220969
RBPJ
Recombining binding protein suppressor of hairless
SUH_HUMAN
CBF1
Reactome DB_ID: 3008668
UniProt:Q06330 RBPJ
RBPJ
IGKJRB
IGKJRB1
RBPJK
RBPSUH
FUNCTION Transcriptional regulator that plays a central role in Notch signaling, a signaling pathway involved in cell-cell communication that regulates a broad spectrum of cell-fate determinations. Acts as a transcriptional repressor when it is not associated with Notch proteins. When associated with some NICD product of Notch proteins (Notch intracellular domain), it acts as a transcriptional activator that activates transcription of Notch target genes. Probably represses or activates transcription via the recruitment of chromatin remodeling complexes containing histone deacetylase or histone acetylase proteins, respectively. Specifically binds to the immunoglobulin kappa-type J segment recombination signal sequence. Binds specifically to methylated DNA (PubMed:21991380). Binds to the oxygen responsive element of COX4I2 and activates its transcription under hypoxia conditions (4% oxygen) (PubMed:23303788). Negatively regulates the phagocyte oxidative burst in response to bacterial infection by repressing transcription of NADPH oxidase subunits (By similarity).SUBUNIT Interacts with activated NOTCH1, NOTCH2 or NOTCH3. Interacts with MINT/SHARP. This interaction may mediate the recruitment of large corepressor complexes containing proteins such as HDAC1, HDAC2, NCOR2, SAP30, FHL1/KYOT2 and CIR1. Interacts with EP300, MAML1 and PTF1A. Interacts with Epstein-Barr virus EBNA2, EBNA3, EBNA4 and EBNA6. Interacts with RITA1/C12orf52, leading to nuclear export, prevent the interaction between RBPJ and NICD product and subsequent down-regulation of the Notch signaling pathway. Interacts with SNW1. Interacts with CHCHD2 and CXXC5 (PubMed:23303788). Interacts with BEND6 (via BEN domain). Interacts with NKAPL (By similarity). Interacts with ZMIZ1. Interacts with RBM15 (By similarity).SIMILARITY Belongs to the Su(H) family.CAUTION Despite some similarity with the 'phage' integrase family, it has no recombinase activity.
Homo sapiens
NCBI Taxonomy
9606
UniProt
Q06330
1
EQUAL
500
EQUAL
Reactome Database ID Release 81
3008668
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=3008668
Reactome
R-HSA-3008668
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-3008668.1
Reactome
http://www.reactome.org
1
SNW1
SKIP
SNW domain-containing protein
SNW1_HUMAN
Reactome DB_ID: 351663
UniProt:Q13573 SNW1
SNW1
SKIIP
SKIP
FUNCTION Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28502770, PubMed:28076346). Is required in the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. Is proposed to recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1-mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coactivators such as MAML1 to form an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ to form a transcriptional activation complex by releasing SNW1 and redundant NOTCH1 NICD.FUNCTION (Microbial infection) Is recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat transcription by recruitment of MYC, MEN1 and TRRAP to the HIV promoter.FUNCTION (Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters.SUBUNIT Identified in the spliceosome C complex (PubMed:11991638, PubMed:28502770, PubMed:28076346). Associates with U4/U6-U5 tri-small nuclear ribonucleoproteins (U4/U6-U5 tri-snRNPs). Interacts with SKI, SMAD2,SMAD3, RBPJ, RB1, PABPN1, MAGEA1, SIRT1, FOXN3, U2AF2, DAXX and ATP1B4. Interacts with PPIL1 (PubMed:16595688, PubMed:20007319, PubMed:20368803, PubMed:33220177). Interacts with VDR and RXRA; preferentially associates with VDR:RXRA heterodimers (PubMed:9632709, PubMed:12529369). Interacts with NCOR2 (PubMed:10644367). Interacts with MAML1 (PubMed:21245387). Interacts with NOTCH1 NICD; the interaction involves multimerized NOTCH1 NICD (PubMed:21245387). Forms a complex with NOTCH1 NICD and MAML1; the association is dissociated by RBPJ (PubMed:21245387). Associates with positive transcription elongation factor b (P-TEFb) (PubMed:15905409). Component of the SNARP complex which consists at least of SNIP1, SNW1, THRAP3, BCLAF1 and PNN (PubMed:18794151).SUBUNIT (Microbial infection) Interacts with human papillomavirus type-16 (HPV16) E7 protein.SUBUNIT (Microbial infection) Interacts with EBV EBNA2; EBNA2 competes with NCOR2 for interaction with SNW1.SIMILARITY Belongs to the SNW family.
UniProt
Q13573
2
EQUAL
536
EQUAL
Reactome Database ID Release 81
351663
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=351663
Reactome
R-HSA-351663
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-351663.1
1
Converted from EntitySet in Reactome
NICD1 PEST Domain Mutants
Reactome DB_ID: 2769016
NICD1 P2514Rfs*4
NICD1 Pro2514Argfs*4
NICD1 PEST domain mutant P2514Rfs*4
Reactome DB_ID: 2769013
UniProt:P46531 NOTCH1
NOTCH1
TAN1
FUNCTION Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4(+) and CD8(+) cells in the thymus. Important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, functions as a receptor for neuronal DNER and is involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May play an essential role in postimplantation development, probably in some aspect of cell specification and/or differentiation. May be involved in mesoderm development, somite formation and neurogenesis. May enhance HIF1A function by sequestering HIF1AN away from HIF1A. Required for the THBS4 function in regulating protective astrogenesis from the subventricular zone (SVZ) niche after injury. Involved in determination of left/right symmetry by modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO).SUBUNIT Heterodimer of a C-terminal fragment N(TM) and an N-terminal fragment N(EC) which are probably linked by disulfide bonds. Interacts with DNER, DTX1, DTX2 and RBPJ/RBPSUH. Also interacts with MAML1, MAML2 and MAML3 which act as transcriptional coactivators for NOTCH1 (PubMed:11101851, PubMed:12370315). The NOTCH1 intracellular domain interacts with SNW1; the interaction involves multimerized NOTCH1 NICD and is implicated in a formation of an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ (PubMed:10713164). The activated membrane-bound form interacts with AAK1 which promotes NOTCH1 stabilization. Forms a trimeric complex with FBXW7 and SGK1. Interacts with HIF1AN. HIF1AN negatively regulates the function of notch intracellular domain (NICD), accelerating myogenic differentiation (PubMed:17573339). Interacts (via NICD) with SNAI1 (via zinc fingers); the interaction induces SNAI1 degradation via MDM2-mediated ubiquitination and inhibits SNAI1-induced cell invasion. Interacts (via NICD) with MDM2A. Interacts (via NICD) with BCL6; the interaction decreases MAML1 recruitment by NOTCH1 NICD on target genes DNA and inhibits NOTCH1 transcractivation activity. Interacts with THBS4 (By similarity). Interacts (via the EGF-like repeat region) with CCN3 (via CTCK domain) (PubMed:12050162). Interacts (via EGF-like domains) with DLL4 (via N-terminal DSL and MNNL domains) (By similarity). Interacts with ZMIZ1. Interacts (via NICD domain) with MEGF10 (via the cytoplasmic domain). Interacts with DLL1 and JAG1 (By similarity). Interacts (via NICD domain) with PRAG1 (By similarity). Forms a complex with PRAG1, N1ICD and MAML1, in a MAML1-dependent manner (By similarity). Interacts (via transmembrane region) with PSEN1; the interaction is direct (PubMed:30598546). Interacts with ZFP64 (By similarity).TISSUE SPECIFICITY In fetal tissues most abundant in spleen, brain stem and lung. Also present in most adult tissues where it is found mainly in lymphoid tissues.DOMAIN Interaction with PSEN1 causes partial unwinding of the transmembrane helix, facilitating access to the scissile peptide bond.PTM Synthesized in the endoplasmic reticulum as an inactive form which is proteolytically cleaved by a furin-like convertase in the trans-Golgi network before it reaches the plasma membrane to yield an active, ligand-accessible form (By similarity). Cleavage results in a C-terminal fragment N(TM) and a N-terminal fragment N(EC). Following ligand binding, it is cleaved by ADAM17 to yield a membrane-associated intermediate fragment called notch extracellular truncation (NEXT) (PubMed:24226769). Following endocytosis, this fragment is then cleaved by one of the catalytic subunits of gamma-secretase (PSEN1 or PSEN2), to release a Notch-derived peptide containing the intracellular domain (NICD) from the membrane (PubMed:30598546).PTM Phosphorylated.PTM O-glycosylated on the EGF-like domains (PubMed:24226769). O-glucosylated at Ser-435 by KDELC1 and KDELC2 (PubMed:30127001). Contains both O-linked fucose and O-linked glucose in the EGF-like domains 11, 12 and 13, which are interacting with the residues on DLL4 (By similarity). O-linked glycosylation by GALNT11 is involved in determination of left/right symmetry: glycosylation promotes activation of NOTCH1, possibly by promoting cleavage by ADAM17, modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO) (PubMed:24226769). MFNG-, RFNG- and LFNG-mediated modification of O-fucose residues at specific EGF-like domains results in inhibition of its activation by JAG1 and enhancement of its activation by DLL1 via an increased binding to DLL1 (By similarity).PTM Ubiquitinated. Undergoes 'Lys-29'-linked polyubiquitination by ITCH; promotes the lysosomal degradation of non-activated internalized NOTCH1 (PubMed:18628966, PubMed:23886940). Monoubiquitination at Lys-1759 is required for activation by gamma-secretase cleavage, it promotes interaction with AAK1, which stabilizes it. Deubiquitination by EIF3F is necessary for nuclear import of activated Notch (PubMed:24226769).PTM Hydroxylated at Asn-1955 by HIF1AN. Hydroxylated at Asn-2022 by HIF1AN (By similarity). Hydroxylation reduces affinity for HI1AN and may thus indirectly modulate negative regulation of NICD (By similarity).SIMILARITY Belongs to the NOTCH family.
UniProt
P46531
2514
EQUAL
L-arginine residue
MOD
MOD:00011
2515
EQUAL
L-valine residue
MOD
MOD:00029
2516
EQUAL
L-proline residue
MOD
MOD:00024
1754
EQUAL
2516
EQUAL
Reactome Database ID Release 81
2769013
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2769013
Reactome
R-HSA-2769013
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2769013.1
COSMIC
COSV53024776
additional information
MI
MI:0361
COSMIC
COSM33946
NICD1 Q2440*
NICD1 Gln2440*
Reactome DB_ID: 2902200
2403
EQUAL
L-glutamine removal
MOD
MOD:01637
1754
EQUAL
2439
EQUAL
Reactome Database ID Release 81
2902200
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2902200
Reactome
R-HSA-2902200
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2902200.1
COSMIC
COSV53024887
NICD1 Q2395*
NICD1 Gln2395*
Reactome DB_ID: 2902201
2395
EQUAL
1754
EQUAL
2394
EQUAL
Reactome Database ID Release 81
2902201
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2902201
Reactome
R-HSA-2902201
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2902201.1
COSMIC
COSV53056886
NICD1 P2474Afs*4
Reactome DB_ID: 2902208
2474
EQUAL
L-alanine residue
MOD
MOD:00010
2475
EQUAL
L-histidine residue
MOD
MOD:00018
2476
EQUAL
1754
EQUAL
2476
EQUAL
Reactome Database ID Release 81
2902208
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2902208
Reactome
R-HSA-2902208
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2902208.1
COSMIC
COSV53084788
Reactome Database ID Release 81
2769016
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2769016
Reactome
R-HSA-2769016
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2769016.1
1
Reactome Database ID Release 81
2220969
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2220969
Reactome
R-HSA-2220969
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2220969.1
1
Converted from EntitySet in Reactome
PCAF
Reactome DB_ID: 350078
PCAF
KAT2B
PCAF_HUMAN
Histone acetyltransferase PCAF
Reactome DB_ID: 352430
UniProt:Q92831 KAT2B
KAT2B
PCAF
FUNCTION Functions as a histone acetyltransferase (HAT) to promote transcriptional activation (PubMed:8945521). Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles (PubMed:8945521). Also acetylates non-histone proteins, such as ACLY, MAPRE1/EB1, PLK4, RRP9/U3-55K and TBX5 (PubMed:9707565, PubMed:10675335, PubMed:23001180, PubMed:27796307, PubMed:23932781, PubMed:26867678, PubMed:29174768). Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A (PubMed:8684459). Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-ARNTL/BMAL1 and CLOCK-ARNTL/BMAL1 heterodimers (PubMed:14645221). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Acetylates RRP9/U3-55K, a core subunit of the U3 snoRNP complex, impairing pre-rRNA processing (PubMed:26867678). Acetylates MAPRE1/EB1, promoting dynamic kinetochore-microtubule interactions in early mitosis (PubMed:23001180). Also acetylates spermidine (PubMed:27389534).FUNCTION (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes.ACTIVITY REGULATION Activated in vitro by very low concentrations of spermidine, but inhibited at spermidine concentrations higher than 4 uM. The activating effect of low spermidine concentrations may be mediated by N(8)-acetylspermidine produced by KAT2B/P/CAF itself acting as a positive feedback loop.SUBUNIT Interacts with SIRT1. Interacts (unsumoylated form) with NR2C1; the interaction promotes transactivation activity (By similarity). Interacts with EP300, CREBBP and DDX17. Interacts with NCOA1 and NCOA3. Component of a large chromatin remodeling complex, at least composed of MYSM1, KAT2B/PCAF, RBM10 and KIF11/TRIP5. Interacts with NR2C2 (hypophosphorylated and unsumoylated form); the interaction promotes the transactivation activity of NR2C2. Interacts with KLF1; the interaction does not acetylate KLF1 and there is no enhancement of its transactivational activity. Interacts with NFE4. Interacts with MECOM. Interacts with E2F1; the interaction acetylates E2F1 augmenting its DNA-binding and transcriptional activity. Interacts with NPAS2, ARNTL/BMAL1 and CLOCK. Interacts with BCAS3. Interacts with CEBPB (PubMed:17301242). Interacts with NR4A3 (By similarity). Interacts with NFATC2 (By similarity). Interacts with TBX5 (PubMed:29174768). Interacts with PLK4 (PubMed:27796307). Interacts with RB1; this interaction leads to RB1 acetylation (By similarity).SUBUNIT (Microbial infection) Interacts with and acetylates HIV-1 Tat.SUBUNIT (Microbial infection) Interacts with HTLV-1 Tax.TISSUE SPECIFICITY Ubiquitously expressed but most abundant in heart and skeletal muscle. Also expressed in the skin, in keratinocytes (at protein level) (PubMed:20940255).DEVELOPMENTAL STAGE Up-regulated during keratinocyte differentiation (at protein level).DOMAIN (Microbial infection) The bromodomain mediates binding to HIV-1 Tat.DISEASE Defects in KAT2B has been found in a patient with isolated coloboma, a defect of the eye characterized by the absence of ocular structures due to abnormal morphogenesis of the optic cup and stalk, and the fusion of the fetal fissure (optic fissure). Isolated colobomas may be associated with an abnormally small eye (microphthalmia) or small cornea.SIMILARITY Belongs to the acetyltransferase family. GCN5 subfamily.
UniProt
Q92831
1
EQUAL
832
EQUAL
Reactome Database ID Release 81
352430
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=352430
Reactome
R-HSA-352430
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-352430.1
GCN5
KAT2A
Histone acetyltransferase KAT2A
KAT2A_HUMAN
Reactome DB_ID: 3006516
UniProt:Q92830 KAT2A
KAT2A
GCN5
GCN5L2
FUNCTION Protein lysine acyltransferase that can act as a acetyltransferase, glutaryltransferase or succinyltransferase, depending on the context (PubMed:29211711). Acts as a histone lysine succinyltransferase: catalyzes succinylation of histone H3 on 'Lys-79' (H3K79succ), with a maximum frequency around the transcription start sites of genes (PubMed:29211711). Succinylation of histones gives a specific tag for epigenetic transcription activation (PubMed:29211711). Association with the 2-oxoglutarate dehydrogenase complex, which provides succinyl-CoA, is required for histone succinylation (PubMed:29211711). In different complexes, functions either as an acetyltransferase (HAT) or as a succinyltransferase: in the SAGA and ATAC complexes, acts as a histone acetyltransferase (PubMed:17301242, PubMed:19103755, PubMed:29211711). Has significant histone acetyltransferase activity with core histones, but not with nucleosome core particles (PubMed:17301242, PubMed:19103755). Acetylation of histones gives a specific tag for epigenetic transcription activation (PubMed:17301242, PubMed:19103755, PubMed:29211711). Recruited by the XPC complex at promoters, where it specifically mediates acetylation of histone variant H2A.Z.1/H2A.Z, thereby promoting expression of target genes (PubMed:29973595, PubMed:31527837). Involved in long-term memory consolidation and synaptic plasticity: acts by promoting expression of a hippocampal gene expression network linked to neuroactive receptor signaling (By similarity). Acts as a positive regulator of T-cell activation: upon TCR stimulation, recruited to the IL2 promoter following interaction with NFATC2 and catalyzes acetylation of histone H3 at 'Lys-9' (H3K9ac), leading to promote IL2 expression (By similarity). Required for growth and differentiation of craniofacial cartilage and bone by regulating acetylation of histone H3 at 'Lys-9' (H3K9ac) (By similarity). Regulates embryonic stem cell (ESC) pluripotency and differentiation (By similarity). Also acetylates non-histone proteins, such as CEBPB, PLK4 and TBX5 (PubMed:17301242, PubMed:27796307, PubMed:29174768). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Also acts as a histone glutaryltransferase: catalyzes glutarylation of histone H4 on 'Lys-91' (H4K91glu), a mark that destabilizes nucleosomes by promoting dissociation of the H2A-H2B dimers from nucleosomes (PubMed:31542297).FUNCTION (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes.SUBUNIT Homooligomer; may form a tetramer of homodimers (PubMed:30109122). Interacts with EP300, CREBBP and ADA2. Component of the TFTC-HAT complex, at least composed of TAF5L, TAF6L, TAF3, TADA3L, SUPT3H/SPT3, TAF2/TAFII150, TAF4/TAFII135, TAF5/TAFII100, KAT2A/GCN5L2, TAF10 and TRRAP (PubMed:10373431, PubMed:10611234, PubMed:11438666). Component of the STAGA transcription coactivator-HAT complex, at least composed of SUPT3H, KAT2A, SUPT7L, TAF5L, TAF6L, TADA3L, TAD1L, TAF10, TAF12, TRRAP and TAF9 (PubMed:18206972). The STAGA core complex is associated with a subcomplex required for histone deubiquitination composed of ATXN7L3, ENY2 and USP22 (PubMed:18206972). Component of the ADA2A-containing complex (ATAC), composed of KAT14, KAT2A, TADA2L, TADA3L, ZZ3, MBIP, WDR5, YEATS2, CCDC101 and DR1 (PubMed:19103755). In the complex, it probably interacts directly with KAT14, MBIP and WDR5 (PubMed:19103755). Interacts with PML (By similarity). Interacts with CEBPB (PubMed:17301242). Interacts with TACC1, TACC2 and TACC3 (PubMed:14767476). Interacts with RELA (By similarity). Interacts with NFATC2 (By similarity). Interacts with TBX5 (PubMed:29174768). Interacts with PLK4 (PubMed:27796307). Associates with the 2-oxoglutarate dehydrogenase complex (PubMed:29211711). Interacts with XPC; leading to KAT2A recruitment to promoters and subsequent acetylation of histones (PubMed:29973595, PubMed:31527837). Interacts with ERCC3/XPB; leading to KAT2A recruitment to promoters and subsequent acetylation of histones (PubMed:30894545).SUBUNIT (Microbial infection) Interacts with and acetylates HIV-1 Tat.TISSUE SPECIFICITY Expressed in all tissues tested, with most abundant expression in ovary.DOMAIN Loop3 is required for substrate specificity and adopts different structural conformations in succinyl-CoA-bound and acetyl-CoA-bound forms. Tyr-645 has an important role in the selective binding of succinyl-CoA over acetyl-CoA.SIMILARITY Belongs to the acetyltransferase family. GCN5 subfamily.CAUTION According to a report, has weak protein acyltransferase activity compared to protein acetyltransferase activity (PubMed:27377381). These conclusions are however not supported by subsequent studies (PubMed:29211711, PubMed:31542297).
UniProt
Q92830
1
EQUAL
837
EQUAL
Reactome Database ID Release 81
3006516
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=3006516
Reactome
R-HSA-3006516
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-3006516.1
Reactome Database ID Release 81
350078
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=350078
Reactome
R-HSA-350078
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-350078.1
1
p300
EP300
Histone acetyltransferase p300
EP300_HUMAN
KAT3B
Reactome DB_ID: 381325
UniProt:Q09472 EP300
EP300
P300
FUNCTION Functions as histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability. Mediates acetylation of histone H3 at 'Lys-27' (H3K27ac) (PubMed:23911289). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1 or SIRT2 (PubMed:12929931, PubMed:16762839, PubMed:18722353). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates BCL6 wich disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493).FUNCTION (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein.SUBUNIT Interacts with HIF1A; the interaction is stimulated in response to hypoxia and inhibited by CITED2 (PubMed:9887100, PubMed:11959990). Probably part of a complex with HIF1A and CREBBP (PubMed:8917528). Interacts (via N-terminus) with TFAP2A (via N-terminus); the interaction requires CITED2 (PubMed:12586840). Interacts (via CH1 domain) with CITED2 (via C-terminus) (PubMed:12586840, PubMed:12778114). Interacts with CITED1 (unphosphorylated form preferentially and via C-terminus) (PubMed:10722728, PubMed:16864582). Interacts with ESR1; the interaction is estrogen-dependent and enhanced by CITED1 (PubMed:11581164). Interacts with HIPK2 (By similarity). Interacts with DTX1, EID1, ELF3, FEN1, LEF1, NCOA1, NCOA6, NR3C1, PCAF, PELP1, PRDM6, SP1, SP3, SPIB, SRY, TCF7L2, DDX5, DDX17, SATB1, SRCAP and TRERF1 (PubMed:11073989, PubMed:11073990, PubMed:10823961, PubMed:11349124, PubMed:11430825, PubMed:11481323, PubMed:11564735, PubMed:11581372, PubMed:11864910, PubMed:12446687, PubMed:12527917, PubMed:12837748, PubMed:14605447, PubMed:15075319, PubMed:15297880, PubMed:16478997, PubMed:8684459, PubMed:17226766, PubMed:9590696). Interacts with JMY, the complex activates p53/TP53 transcriptional activity (PubMed:10518217, PubMed:11511361). Interacts with TTC5/STRAP; the interaction facilitates the association between JMY and p300/EP300 cofactors (PubMed:11511361). Interacts with p53/TP53; the interation is facilitated by TTC5/STRAP (PubMed:15186775, PubMed:15448695, PubMed:19217391). Forms a complex with TTC5/STRAP and HSF1; these interactions augment chromatin-bound HSF1 and p300/EP300 histone acetyltransferase activity (PubMed:18451878). Part of a complex containing CARM1 and NCOA2/GRIP1 (PubMed:11701890, PubMed:11997499, PubMed:15731352). Interacts with ING4 and this interaction may be indirect (PubMed:12750254). Interacts with ING5 (PubMed:12750254). Interacts with the C-terminal region of CITED4 (PubMed:11744733). Non-sumoylated EP300 preferentially interacts with SENP3 (PubMed:19680224). Interacts with SS18L1/CREST (PubMed:14716005). Interacts with ALX1 (via homeobox domain) (PubMed:12929931). Interacts with NEUROD1; the interaction is inhibited by NR0B2 (PubMed:14752053). Interacts with TCF3 (PubMed:14752053). Interacts (via CREB-binding domain) with MYOCD (via C-terminus) (By similarity). Interacts with ROCK2 and PPARG (PubMed:11518699, PubMed:16574662). Forms a complex made of CDK9, CCNT1/cyclin-T1, EP300 and GATA4 that stimulates hypertrophy in cardiomyocytes (PubMed:20081228). Interacts with IRF1 and this interaction enhances acetylation of p53/TP53 and stimulation of its activity (PubMed:15509808). Interacts with FOXO1; the interaction acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Interacts with ALKBH4 and DDIT3/CHOP (PubMed:17872950, PubMed:23145062). Interacts with KLF15 (PubMed:23999430). Interacts with CEBPB and RORA (PubMed:9862959). Interacts with NPAS2, ARNTL/BMAL1 and CLOCK (PubMed:14645221). Interacts with SIRT2 isoform 1, isoform 2 and isoform 5 (PubMed:24177535). Interacts with MTA1 (PubMed:16617102). Interacts with HDAC4 and HDAC5 in the presence of TFAP2C (PubMed:24413532). Interacts with TRIP4 (PubMed:25219498). Directly interacts with ZBTB49; this interaction leads to synergistic transactivation of CDKN1A (PubMed:25245946). Interacts with NR4A3 (By similarity). Interacts with ZNF451 (PubMed:24324267). Interacts with ATF5; EP300 is required for ATF5 and CEBPB interaction and DNA binding (By similarity). Interacts with HSF1 (PubMed:27189267). Interacts with ZBTB48/TZAP (PubMed:24382891). Interacts with STAT1; the interaction is enhanced upon IFN-gamma stimulation (PubMed:26479788). Interacts with HNRNPU (via C-terminus); this interaction enhances DNA-binding of HNRNPU to nuclear scaffold/matrix attachment region (S/MAR) elements (PubMed:11909954). Interacts with BCL11B (PubMed:27959755, PubMed:16809611). Interacts with SMAD4; negatively regulated by ZBTB7A (PubMed:25514493). Interacts with DUX4 (via C-terminus) (PubMed:26951377). Interacts with NUPR1; this interaction enhances the effect of EP300 on PAX2 transcription factor activity (PubMed:11940591). Interacts with RXRA; the interaction is decreased by 9-cis retinoic acid (PubMed:17761950). NR4A1 competes with EP300 for interaction with RXRA and thereby attenuates EP300 mediated acetylation of RXRA (PubMed:17761950). Interacts with RB1 (By similarity). Interacts with DDX3X; this interaction may facilitate HNF4A acetylation (PubMed:28128295). Interacts with SOX9 (PubMed:12732631). Interacts with ATF4; EP300/p300 stabilizes ATF4 and increases its transcriptional activity independently of its catalytic activity by preventing its ubiquitination (PubMed:16219772). Interacts with KAT5; promoting KAT5 autoacetylation (PubMed:24835996).SUBUNIT (Microbial infection) Interacts with human adenovirus 5 E1A protein; this interaction stimulates the acetylation of RB1 by recruiting EP300 and RB1 into a multimeric-protein complex.SUBUNIT (Microbial infection) Interacts with and acetylates HIV-1 Tat.SUBUNIT (Microbial infection) Interacts with HTLV-1 proteins Tax, p30II and HBZ.DOMAIN The CRD1 domain (cell cycle regulatory domain 1) mediates transcriptional repression of a subset of p300 responsive genes; it can be de-repressed by CDKN1A/p21WAF1 at least at some promoters. It conatins sumoylation and acetylation sites and the same lysine residues may be targeted for the respective modifications. It is proposed that deacetylation by SIRT1 allows sumoylation leading to suppressed activity.PTM Acetylated on Lys at up to 17 positions by intermolecular autocatalysis. Deacetylated in the transcriptional repression domain (CRD1) by SIRT1, preferentially at Lys-1020. Deacetylated by SIRT2, preferentially at Lys-418, Lys-423, Lys-1542, Lys-1546, Lys-1549, Lys-1699, Lys-1704 and Lys-1707.PTM Citrullinated at Arg-2142 by PADI4, which impairs methylation by CARM1 and promotes interaction with NCOA2/GRIP1.PTM Methylated at Arg-580 and Arg-604 in the KIX domain by CARM1, which blocks association with CREB, inhibits CREB signaling and activates apoptotic response. Also methylated at Arg-2142 by CARM1, which impairs interaction with NCOA2/GRIP1.PTM Sumoylated; sumoylation in the transcriptional repression domain (CRD1) mediates transcriptional repression. Desumoylated by SENP3 through the removal of SUMO2 and SUMO3.PTM Probable target of ubiquitination by FBXO3, leading to rapid proteasome-dependent degradation.PTM Phosphorylated by HIPK2 in a RUNX1-dependent manner. This phosphorylation that activates EP300 happens when RUNX1 is associated with DNA and CBFB. Phosphorylated by ROCK2 and this enhances its activity. Phosphorylation at Ser-89 by AMPK reduces interaction with nuclear receptors, such as PPARG.DISEASE Defects in EP300 may play a role in epithelial cancer.DISEASE Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A.
UniProt
Q09472
2
EQUAL
2414
EQUAL
Reactome Database ID Release 81
381325
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=381325
Reactome
R-HSA-381325
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-381325.1
1
KAT3A
CREBBP
CREB-binding protein
CBP_HUMAN
Reactome DB_ID: 193545
UniProt:Q92793 CREBBP
CREBBP
CBP
FUNCTION Acetylates histones, giving a specific tag for transcriptional activation (PubMed:24616510). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:9707565, PubMed:24207024, PubMed:28790157, PubMed:30540930). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-ARNTL/BMAL1 and CLOCK-ARNTL/BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493).SUBUNIT Found in a complex containing NCOA2; NCOA3; IKKA; IKKB and IKBKG. Probably part of a complex with HIF1A and EP300. Interacts with GATA1; the interaction results in acetylation and enhancement of transcriptional activity of GATA1. Interacts with MAF AND ZCCHC12. Interacts with DAXX; the interaction is dependent on CBP sumoylation and results in suppression of the transcriptional activity via recruitment of HDAC2 to DAXX (By similarity). Interacts with phosphorylated CREB1. Interacts with CITED4 (C-terminal region). Interacts (via the TAZ-type 1 domain) with HIF1A. Interacts with SRCAP, CARM1, ELF3, MLLT7/FOXO4, N4BP2, NCOA1, NCOA3, NCOA6, PCAF, DDX5, DDX17, PELP1, PML, SMAD1, SMAD2, SMAD3, SPIB and TRERF1. Interacts with KLF1; the interaction results in acetylation of KLF1 and enhancement of its transcriptional activity. Interacts with MTDH. Interacts with NFATC4. Interacts with MAFG; the interaction acetylates MAFG in the basic region and stimulates NFE2 transcriptional activity through increasing its DNA-binding activity. Interacts with IRF2; the interaction acetylates IRF2 and regulates its activity on the H4 promoter. Interacts with IRF3 (when phosphorylated); forming the dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I interferon genes (PubMed:27302953). Interacts (via N-terminus) with SS18L1/CREST (via C-terminus). Interacts with MECOM. Interacts with CITED1 (via C-terminus). Interacts with FOXO1; the interaction acetylates FOXO1 and inhibits its transcriptional activity. Interacts with NPAS2, CLOCK and ARNTL/BMAL1. Interacts with ASF1A and ASF1B; this promotes histone acetylation. Interacts with acetylated TP53/p53 and with the acetylated histones H3 and H4. Interacts (via transactivation domain and C-terminus) with PCNA; the interaction occurs on chromatin in UV-irradiated damaged cells (PubMed:24939902). Interacts with DHX9 (via N-terminus); this interaction mediates association with RNA polymerase II holoenzyme and stimulates CREB-dependent transcriptional activation (PubMed:9323138). Interacts with SMAD4; negatively regulated by ZBTB7A (PubMed:25514493). Interacts with DUX4 (via C-terminus) (PubMed:26951377). Forms a complex with KMT2A and CREB1 (PubMed:23651431). Interacts with DDX3X; this interaction may facilitate HNF4A acetylation (PubMed:28128295).SUBUNIT (Microbial infection) Interacts with HTLV-1 Tax, p30II and HBZ.SUBUNIT (Microbial infection) Interacts with human herpes virus 8/HHV-8 protein vIRF-1; this interaction inhibits CREBBP binding to IRF3.SUBUNIT (Microbial infection) Interacts with HIV-1 Tat.DOMAIN The KIX domain mediates binding to HIV-1 Tat.PTM Methylation of the KIX domain by CARM1 blocks association with CREB. This results in the blockade of CREB signaling, and in activation of apoptotic response (By similarity).PTM Phosphorylated by CHUK/IKKA at Ser-1382 and Ser-1386; these phosphorylations promote cell growth by switching the binding preference of CREBBP from TP53 to NF-kappa-B.PTM Sumoylation negatively regulates transcriptional activity via the recruitment of DAAX.PTM Autoacetylation is required for binding to protein substrates, such as acetylated histones and acetylated TP53/p53.DISEASE Chromosomal aberrations involving CREBBP may be a cause of acute myeloid leukemias. Translocation t(8;16)(p11;p13) with KAT6A; translocation t(11;16)(q23;p13.3) with KMT2A/MLL1; translocation t(10;16)(q22;p13) with KAT6B. KAT6A-CREBBP may induce leukemia by inhibiting RUNX1-mediated transcription.
UniProt
Q92793
1
EQUAL
2442
EQUAL
Reactome Database ID Release 81
193545
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=193545
Reactome
R-HSA-193545
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-193545.1
1
Converted from EntitySet in Reactome
MAML
Reactome DB_ID: 212357
MAML1
Reactome DB_ID: 212416
UniProt:Q92585 MAML1
MAML1
KIAA0200
FUNCTION Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions.SUBUNIT Interacts (via N-terminus) with NOTCH1, NOTCH2, NOTCH3 and NOTCH4 (via ankyrin repeat region). Interacts (via N-terminus) with p53 (via DNA-binding region). Forms a DNA-binding complex with Notch proteins and RBPSUH/RBP-J kappa/CBF1. Also binds CREBBP/CBP and CDK8.Forms a complex with PRAG1, NOTCH1 and MAML1, in a MAML1-dependent manner (By similarity).TISSUE SPECIFICITY Widely expressed with highest levels in heart, pancreas, peripheral blood leukocytes and spleen.DOMAIN The C-terminal region is required for transcriptional activation.SIMILARITY Belongs to the mastermind family.
UniProt
Q92585
1
EQUAL
1016
EQUAL
Reactome Database ID Release 81
212416
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212416
Reactome
R-HSA-212416
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212416.1
MAML2
Reactome DB_ID: 212353
UniProt:Q8IZL2 MAML2
MAML2
KIAA1819
FUNCTION Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Potentiates activation by NOTCH3 and NOTCH4 more efficiently than MAML1 or MAML3.SUBUNIT Interacts through its N-terminal region with the ankyrin repeat region of the Notch proteins NOTCH1, NOTCH2, NOTCH3 and NOTCH4. Forms a DNA-binding complex with Notch proteins and RBPSUH/RBP-J kappa.TISSUE SPECIFICITY Widely expressed with high levels detected in placenta, salivary gland and skeletal muscle.DOMAIN The C-terminal domain is required for transcriptional activation.DISEASE A chromosomal aberration involving MAML2 is found in mucoepidermoid carcinomas, benign Warthin tumors and clear cell hidradenomas. Translocation t(11;19)(q21;p13) with CRTC1. The fusion protein consists of the N-terminus of CRTC1 joined to the C-terminus of MAML2. The reciprocal fusion protein consisting of the N-terminus of MAML2 joined to the C-terminus of CRTC1 has been detected in a small number of mucoepidermoid carcinomas.SIMILARITY Belongs to the mastermind family.
UniProt
Q8IZL2
1
EQUAL
1156
EQUAL
Reactome Database ID Release 81
212353
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212353
Reactome
R-HSA-212353
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212353.1
MAML3
MAML3_HUMAN
Reactome DB_ID: 349689
UniProt:Q96JK9 MAML3
MAML3
KIAA1816
FUNCTION Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1.SUBUNIT Interacts through its N-terminal region with the ankyrin repeat region of the Notch proteins NOTCH1, NOTCH2, NOTCH3 and NOTCH4. Forms a DNA-binding complex with Notch proteins and RBPSUH/RBP-J kappa.DOMAIN The C-terminal domain is required for transcriptional activation.SIMILARITY Belongs to the mastermind family.
UniProt
Q96JK9
1
EQUAL
1134
EQUAL
Reactome Database ID Release 81
349689
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=349689
Reactome
R-HSA-349689
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-349689.1
MAMLD1
MAMD1_HUMAN
Reactome DB_ID: 349692
UniProt:Q13495 MAMLD1
MAMLD1
CG1
CXorf6
FUNCTION Transactivates the HES3 promoter independently of NOTCH proteins. HES3 is a non-canonical NOTCH target gene which lacks binding sites for RBPJ.TISSUE SPECIFICITY Expressed in fetal brain, fetal ovary and fetal testis. Expressed in adult brain, ovary, skin, testis, uterus. Highly expressed in skeletal muscle.INDUCTION By NR5A1.SIMILARITY Belongs to the mastermind family.
UniProt
Q13495
1
EQUAL
774
EQUAL
Reactome Database ID Release 81
349692
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=349692
Reactome
R-HSA-349692
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-349692.1
Reactome Database ID Release 81
212357
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212357
Reactome
R-HSA-212357
2
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212357.2
1
Reactome Database ID Release 81
2220989
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2220989
Reactome
R-HSA-2220989
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2220989.1
CDK8:CCNC
Reactome DB_ID: 1604465
CDK8
Reactome DB_ID: 212440
UniProt:P49336 CDK8
CDK8
FUNCTION Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. Phosphorylates the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAp II), which may inhibit the formation of a transcription initiation complex. Phosphorylates CCNH leading to down-regulation of the TFIIH complex and transcriptional repression. Recruited through interaction with MAML1 to hyperphosphorylate the intracellular domain of NOTCH, leading to its degradation.SUBUNIT Component of the Mediator complex, which is composed of MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The MED12, MED13, CCNC and CDK8 subunits form a distinct module termed the CDK8 module. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP. The cylin/CDK pair formed by CCNC/CDK8 also associates with the large subunit of RNA polymerase II. Interacts with CTNNB1, GLI3 and MAML1.SIMILARITY Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. CDC2/CDKX subfamily.
UniProt
P49336
1
EQUAL
464
EQUAL
Reactome Database ID Release 81
212440
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212440
Reactome
R-HSA-212440
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212440.1
1
CCNC
CycC
Reactome DB_ID: 212418
UniProt:P24863 CCNC
CCNC
FUNCTION Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. Binds to and activates cyclin-dependent kinase CDK8 that phosphorylates the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAp II), which may inhibit the formation of a transcription initiation complex.SUBUNIT Component of the Mediator complex, which is composed of MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The MED12, MED13, CCNC and CDK8 subunits form a distinct module termed the CDK8 module. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP. The cylin/CDK pair formed by CCNC/CDK8 also associates with the large subunit of RNA polymerase II.TISSUE SPECIFICITY Highest levels in pancreas. High levels in heart, liver, skeletal muscle and kidney. Low levels in brain.SIMILARITY Belongs to the cyclin family. Cyclin C subfamily.
UniProt
P24863
1
EQUAL
283
EQUAL
Reactome Database ID Release 81
212418
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212418
Reactome
R-HSA-212418
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212418.1
1
Reactome Database ID Release 81
1604465
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=1604465
Reactome
R-HSA-1604465
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-1604465.1
ComplexPortal
CPX-1969
NOTCH1 PEST Domain Mutants Coactivator Complex:CDK8:CCNC
Reactome DB_ID: 2220980
1
1
Reactome Database ID Release 81
2220980
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2220980
Reactome
R-HSA-2220980
1
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2220980.1
Reactome Database ID Release 81
2220957
Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=2220957
Reactome
R-HSA-2220957
2
Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-2220957.2
15546612
Pubmed
2004
Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover
Fryer, CJ
White, JB
Jones, KA
Mol Cell 16:509-20