BioPAX pathway converted from "SIRT1 negatively regulates rRNA expression" in the Reactome database.SIRT1 negatively regulates rRNA expressionRegulation of rRNA Expression by NAD-dependent Deacetylase Sirtuin-1Expression of rRNA genes is coupled to the overall metabolism of the cell by the NAD-dependent histone deacetylase SIRT1, a component of the Energy-dependent Nucleolar Silencing Complex (eNoSC) (Murayama et al. 2008, reviewed in Salminen and Kaarniranta 2009, Grummt and Voit 2010). eNoSC comprises Nucleomethylin (NML), SIRT1, and the histone methylase SUV39H1 (Murayama et al. 2008). Deacetylation and methylation of histone H3 in the chromatin of a rRNA gene by eNoSC causes reduced expression of the gene. When glucose is low, NAD is high (NADH is low), activity of SIRT1 is high, and activity of rRNA genes is reduced. It is hypothesized that eNoSC forms on a nucleosome containing dimethylated lysine-9 on histone H3 (H3K9me2) and then eNoSC deacetylates and dimethylates the adjacent nucleosome, thus catalyzing spreading of H3K9me2 throughout the gene.Authored: May, B, 2009-06-22Reviewed: Voit, Renate, Grummt, Ingrid, 2014-01-21Edited: May, B, 2009-06-22LEFT-TO-RIGHTRRP8 binds RNARRP8 (Nucleomethylin, NML) recruits SIRT1 to the nucleolus to form the energy-dependent Nucleolar Silencing Complex (eNoSC), which induces chromatin changes that inhibit rRNA transcription. RRP8 can bind 5S RNA (transcribed by RNA ploymerase III), 5.8S rRNA, and 28S rRNA and the bound RNA prevents RRP8 from binding SIRT1 (Yang et al. 2013). Thus the level of 5S RNA, 5.8S rRNA, and 28S rRNA in the nucleus negatively regulates the assembly of eNoSC, coupling transcriptional regulation of rRNA to epigenetic silencing of rRNA genes.Authored: May, B, 2013-11-10Reviewed: Voit, Renate, Grummt, Ingrid, 2014-01-21Edited: May, B, 2013-11-10Converted from EntitySet in Reactome5S RNA, 5.8S rRNA, 28S rRNAReactome DB_ID: 509648428S rRNAReactome DB_ID: 5096493nucleoplasmGENE ONTOLOGYGO:0005654EMBL:M11167 28S rRNA28S rRNAHomo sapiensNCBI Taxonomy9606EMBLM111671EQUAL5025EQUALReactome Database ID Release 755096493Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5096493ReactomeR-HSA-50964931Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5096493.1Reactomehttp://www.reactome.org5.8S rRNAReactome DB_ID: 5096485EMBL:J01866 5.8S rRNA5.8S rRNAEMBLJ01866Reactome Database ID Release 755096485Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5096485ReactomeR-HSA-50964851Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5096485.15S rRNAReactome DB_ID: 5096490EMBL:V00589 5S rRNA5S rRNAEMBLV00589Reactome Database ID Release 755096490Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5096490ReactomeR-HSA-50964901Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5096490.1Reactome Database ID Release 755096484Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5096484ReactomeR-HSA-50964841Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5096484.1NMLRRP8NucleomethylinCerebral protein 1KIAA0409HUCE1_HUMANReactome DB_ID: 427524UniProt:O43159 RRP8RRP8KIAA0409NMLhucep-1FUNCTION Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown.SUBUNIT Component of the eNoSC complex, composed of SIRT1, SUV39H1 and RRP8.SIMILARITY Belongs to the methyltransferase superfamily. RRP8 family.UniProtO431591EQUAL456EQUALReactome Database ID Release 75427524Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427524ReactomeR-HSA-4275241Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427524.1NML:5S RNA, rRNARRP8:5S RNA, rRNAReactome DB_ID: 509649611Reactome Database ID Release 755096496Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5096496ReactomeR-HSA-50964961Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5096496.1Reactome Database ID Release 755096488Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5096488ReactomeR-HSA-50964881Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5096488.123897426Pubmed2013Regulation of SirT1-nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availabilityYang, LeixiangSong, TanjingChen, LihongKabra, NehaZheng, HongKoomen, JohnSeto, EdwardChen, JiandongMol. Cell. Biol. 33:3835-48LEFT-TO-RIGHTFormation of energy-dependent Nucleolar Silencing Complex (eNoSC)RRP8 (Nucleomethylin, NML), SIRT1, and SUV39H1 form the energy-dependent Nucleolar Silencing Complex (eNoSC) at inactive rRNA genes (Murayama et al. 2008). RRP8 is constitutively located in the nucleolus (Yang et al. 2013), binds histone H3 dimethylated at lysine-9 (Murayama et al. 2008) and appears to recruit SIRT1 from the nucleoplasm to the nucleolus (Yang et al. 2013). The eNoSC binds chromatin throughout the rRNA transcription unit. SIRT1 may deacetylate and, hence, activate SUV39H1 but this has not yet been shown at rDNA. Abrogation of any member of eNoSC interferes with binding of the other members of the complex. The eNoSC complex appears to cause spreading of heterochromatin at rDNA.Authored: May, B, 2009-06-22Reviewed: Voit, Renate, Grummt, Ingrid, 2014-01-21Edited: May, B, 2009-06-22SIRT1NAD-dependent deacetylase sirtuin-1SIRT1_HUMANReactome DB_ID: 427531UniProt:Q96EB6 SIRT1SIRT1SIR2L1FUNCTION NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21947282, PubMed:22274616, PubMed:24415752, PubMed:24824780). Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (PubMed:15469825). Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively (PubMed:15152190, PubMed:14980222, PubMed:14976264). Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction (PubMed:15205477). Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT) (By similarity). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus (PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1, leading to its activation (PubMed:21504832). Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449). Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression (PubMed:20375098). Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting (By similarity). Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1 (PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response (PubMed:18004385, PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence (PubMed:11672523, PubMed:12006491). Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I (By similarity). Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability (PubMed:19364925, PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation (PubMed:14980222, PubMed:14976264, PubMed:21841822). Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis (PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1 (PubMed:17620057, PubMed:17283066, PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver (PubMed:15692560). Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional repression (PubMed:12535671). In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62' (PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3 (PubMed:17505061). Represses HNF1A-mediated transcription (By similarity). Required for the repression of ESRRG by CREBZF (PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed (PubMed:17936707). Involved in lipid metabolism (PubMed:20817729). Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2 (By similarity). Deacetylates p300/EP300 and PRMT1 (By similarity). Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation (PubMed:21701047). Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2 (PubMed:15205477, PubMed:17334224, PubMed:16998810, PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625). Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1 (PubMed:19934257). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641). Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation (PubMed:21775285). Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability (PubMed:21890893). Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization (PubMed:22274616). During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including ARNTL/BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling (PubMed:18662546). Deacetylates ARNTL/BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator (By similarity). Deacetylates PER2, facilitating its ubiquitination and degradation by the proteosome (By similarity). Protects cardiomyocytes against palmitate-induced apoptosis (By similarity). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis (PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). In addition to protein deacetylase activity, also acts as protein-lysine deacylase: acts as a protein depropionylase by mediating depropionylation of Osterix (SP7) (By similarity). Deacetylates SOX9; promoting SOX9 nuclear localization and transactivation activity (By similarity). Involved in the regulation of centrosome duplication. Deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (PubMed:31722219).FUNCTION (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection.ACTIVITY REGULATION Inhibited by nicotinamide. Activated by resveratrol (3,5,4'-trihydroxy-trans-stilbene), butein (3,4,2',4'-tetrahydroxychalcone), piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene), Isoliquiritigenin (4,2',4'-trihydroxychalcone), fisetin (3,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-pentahydroxyflavone). MAPK8/JNK1 and RPS19BP1/AROS act as positive regulators of deacetylation activity. Negatively regulated by CCAR2.SUBUNIT Interacts with XBP1 isoform 2 (PubMed:20955178). Found in a complex with PCAF and MYOD1. Interacts with FOXO1; the interaction deacetylates FOXO1, resulting in its nuclear retention and promotion of its transcriptional activity Component of the eNoSC complex, composed of SIRT1, SUV39H1 and RRP8. Interacts with HES1, HEY2 and PML. Interacts with RPS19BP1/AROS. Interacts with CCAR2 (via N-terminus); the interaction disrupts the interaction between SIRT1 and p53/TP53. Interacts with SETD7; the interaction induces the dissociation of SIRT1 from p53/TP53 and increases p53/TP53 activity. Interacts with MYCN, NR1I2, CREBZF, TSC2, TLE1, FOS, JUN, NR0B2, PPARG, NCOR, IRS1, IRS2 and NMNAT1. Interacts with HNF1A; the interaction occurs under nutrient restriction. Interacts with SUZ12; the interaction mediates the association with the PRC4 histone methylation complex which is specific as an association with PCR2 and PCR3 complex variants is not found. Interacts with BCL6; leads to a epigenetic repression of specific target genes. Interacts with CLOCK, ARNTL/BMAL1 and PER2 (By similarity). Interacts with PPARA; the interaction seems to be modulated by NAD(+) levels (PubMed:24043310). Interacts with NR1H3 and this interaction is inhibited in the presence of CCAR2. Interacts with CHEK2. Interacts with p53/TP53. Exhibits a preferential interaction with sumoylated CCAR2 over its unmodified form. Interacts with PACS2 (PubMed:29656858). Interacts with SIRT7 (By similarity).SUBUNIT (Microbial infection) Interacts with HIV-1 Tat.TISSUE SPECIFICITY Widely expressed.INDUCTION Up-regulated by methyl methanesulfonate (MMS). In H293T cells by presence of rat calorie restriction (CR) serum.PTM Methylated on multiple lysine residues; methylation is enhanced after DNA damage and is dispensable for deacetylase activity toward p53/TP53.PTM Phosphorylated. Phosphorylated by STK4/MST1, resulting in inhibition of SIRT1-mediated p53/TP53 deacetylation. Phosphorylation by MAPK8/JNK1 at Ser-27, Ser-47, and Thr-530 leads to increased nuclear localization and enzymatic activity. Phosphorylation at Thr-530 by DYRK1A and DYRK3 activates deacetylase activity and promotes cell survival. Phosphorylation by mammalian target of rapamycin complex 1 (mTORC1) at Ser-47 inhibits deacetylation activity. Phosphorylated by CaMK2, leading to increased p53/TP53 and NF-kappa-B p65/RELA deacetylation activity (By similarity). Phosphorylation at Ser-27 implicating MAPK9 is linked to protein stability. There is some ambiguity for some phosphosites: Ser-159/Ser-162 and Thr-544/Ser-545.PTM Proteolytically cleaved by cathepsin B upon TNF-alpha treatment to yield catalytic inactive but stable SirtT1 75 kDa fragment (75SirT1).PTM S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent protein deacetylase activity.PTM Acetylated at various Lys residues. Deacetylated via an autocatalytic mechanism. Autodeacetylation at Lys-238 promotes its protein deacetylase activity.MISCELLANEOUS Red wine, which contains resveratrol, may participate in activation of sirtuin proteins, and may therefore participate in an extended lifespan as it has been observed in yeast.MISCELLANEOUS Calf histone H1 is used as substrate in the in vitro deacetylation assay (PubMed:15469825). As, in vivo, interaction occurs between SIRT1 with H1-4, deacetylation has been validated only for H1-4.MISCELLANEOUS The reported ADP-ribosyltransferase activity of sirtuins is likely some inefficient side reaction of the deacetylase activity and may not be physiologically relevant.SIMILARITY Belongs to the sirtuin family. Class I subfamily.UniProtQ96EB62EQUAL747EQUALReactome Database ID Release 75427531Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427531ReactomeR-HSA-4275311Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427531.1Chromatin (H3K9me2)Reactome DB_ID: 3211683DNADeoxyribonucleic AcidReactome DB_ID: 29428Reactome Database ID Release 7529428Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=29428ReactomeR-ALL-294281Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-29428.1ChEBI4705additional informationMIMI:03611Nucleosome with H3K9me2Nucleosome with Deacetylated H4 and H3 Dimethylated at Lysine-9Reactome DB_ID: 427331Converted from EntitySet in ReactomeHistone H2AReactome DB_ID: 181899H2AFB1Histone H2A-BbdReactome DB_ID: 181887UniProt:P0C5Y9 H2AB1H2AB1H2AFB1FUNCTION Atypical histone H2A which can replace conventional H2A in some nucleosomes and is associated with active transcription and mRNA processing (PubMed:22795134). Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability (PubMed:15257289, PubMed:16287874, PubMed:16957777, PubMed:17591702, PubMed:17726088, PubMed:18329190, PubMed:22795134). Nucleosomes containing this histone are less rigid and organize less DNA than canonical nucleosomes in vivo (PubMed:15257289, PubMed:16957777, PubMed:17591702, PubMed:24336483). They are enriched in actively transcribed genes and associate with the elongating form of RNA polymerase (PubMed:17591702, PubMed:24753410). They associate with spliceosome components and are required for mRNA splicing (PubMed:22795134).SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. May be incorporated into a proportion of nucleosomes, replacing one or more H2A molecules.TISSUE SPECIFICITY Present in mature sperm.DOMAIN The docking domain is responsible for the weaker heterodimerization with H2B.MISCELLANEOUS In contrast to other H2A histones, it does not contain the conserved residues that are the target of post-translational modifications.SIMILARITY Belongs to the histone H2A family.CAUTION Although related to variant histone H2AB1 in mouse (AC Q9CQ70), it is unclear whether human and mouse H2AB1 proteins are involved in similar processes. In mouse, variant histone H2AB1 is specifically required to direct the transformation of dissociating nucleosomes to protamine in male germ cells during spermatogenesis. It is however unclear whether human protein, which participates in mRNA processing and is associated with active transcription, is also involved in nucleosomes to protamine replacement (PubMed:22795134).UniProtP0C5Y91EQUAL115EQUALReactome Database ID Release 75181887Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181887ReactomeR-HSA-1818871Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181887.1HIST1H2ABReactome DB_ID: 181888UniProt:P04908 H2AC4H2AC4H2AFMHIST1H2ABH2AC8H2AFAHIST1H2AEFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Deiminated on Arg-4 in granulocytes upon calcium entry.PTM Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers (PubMed:25470042). Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired (PubMed:27083998). H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.PTM Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.PTM Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex (PubMed:24352239).PTM Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.MASS SPECTROMETRY Monoisotopic with N-acetylserine.SIMILARITY Belongs to the histone H2A family.UniProtP049082EQUAL130EQUALReactome Database ID Release 75181888Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181888ReactomeR-HSA-1818881Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181888.1HIST1H2AJHistone H2A.eReactome DB_ID: 181890UniProt:Q99878 H2AC14H2AC14H2AFEHIST1H2AJFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Deiminated on Arg-4 in granulocytes upon calcium entry.PTM Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers (PubMed:25470042). Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired (PubMed:27083998). H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.PTM Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.PTM Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex (PubMed:24352239).PTM Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.MASS SPECTROMETRY Monoisotopic with N-acetylserine.SIMILARITY Belongs to the histone H2A family.UniProtQ998782EQUAL128EQUALReactome Database ID Release 75181890Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181890ReactomeR-HSA-1818901Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181890.1HIST1H2ADHistone H2A.gReactome DB_ID: 181896UniProt:P20671 H2AC7H2AC7H2AFGHIST1H2ADFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Deiminated on Arg-4 in granulocytes upon calcium entry.PTM Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers (PubMed:25470042). Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired (PubMed:27083998). H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.PTM Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.PTM Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex (PubMed:24352239).PTM Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.MASS SPECTROMETRY Monoisotopic with N-acetylserine.SIMILARITY Belongs to the histone H2A family.CAUTION Was originally thought to originate from mouse.UniProtP206712EQUAL130EQUALReactome Database ID Release 75181896Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181896ReactomeR-HSA-1818961Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181896.1HIST1H2ACHistone H2A.lReactome DB_ID: 181895UniProt:Q93077 H2AC6H2AC6H2AFLHIST1H2ACFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Deiminated on Arg-4 in granulocytes upon calcium entry.PTM Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers (PubMed:25470042). Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired (PubMed:27083998). H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.PTM Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.PTM Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex (PubMed:24352239).PTM Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.MASS SPECTROMETRY Monoisotopic with N-acetylserine.SIMILARITY Belongs to the histone H2A family.UniProtQ930772EQUAL130EQUALReactome Database ID Release 75181895Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181895ReactomeR-HSA-1818951Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181895.1HIST2H2AA3Histone H2A.oReactome DB_ID: 181891UniProt:Q6FI13 H2AC18H2AC18H2AFOHIST2H2AAHIST2H2AA3H2AC19HIST2H2AA4FUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Deiminated on Arg-4 in granulocytes upon calcium entry.PTM Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers (PubMed:25470042). Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired (PubMed:27083998). H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.PTM Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.PTM Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex (PubMed:24352239).PTM Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.MASS SPECTROMETRY Monoisotopic with N-acetylserine.SIMILARITY Belongs to the histone H2A family.UniProtQ6FI132EQUAL130EQUALReactome Database ID Release 75181891Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181891ReactomeR-HSA-1818911Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181891.1HIST2H2ACHistone H2A.qReactome DB_ID: 181892UniProt:Q16777 H2AC20H2AC20H2AFQHIST2H2ACFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Deiminated on Arg-4 in granulocytes upon calcium entry.PTM Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers (PubMed:25470042). Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired (PubMed:27083998). H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.PTM Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.PTM Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.PTM Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex (PubMed:24352239).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.MASS SPECTROMETRY Monoisotopic with N-acetylserine.SIMILARITY Belongs to the histone H2A family.UniProtQ167772EQUAL129EQUALReactome Database ID Release 75181892Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181892ReactomeR-HSA-1818921Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181892.1H2AFJHistone H2A.JH2AJ_HUMANReactome DB_ID: 8862432UniProt:Q9BTM1 H2AJH2AJH2AFJFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination of Lys-120 (H2AXK119ub) gives a specific tag for epigenetic transcriptional repression. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties (By similarity).PTM Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription (By similarity).PTM Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex (By similarity).SIMILARITY Belongs to the histone H2A family.UniProtQ9BTM12EQUAL129EQUALReactome Database ID Release 758862432Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=8862432ReactomeR-HSA-88624322Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-8862432.2H2AFVHistone H2A.VH2AV_HUMANReactome DB_ID: 8862427UniProt:Q71UI9 H2AZ2H2AZ2H2AFVH2AVFUNCTION Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochromatin. May be required for chromosome segregation during cell division (By similarity).SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. H2A or its variant H2AZ2 forms a heterodimer with H2B (By similarity).PTM Monoubiquitination of Lys-122 gives a specific tag for epigenetic transcriptional repression.PTM Acetylated on Lys-5, Lys-8 and Lys-12 during interphase. Acetylation disappears at mitosis (By similarity).MASS SPECTROMETRY Monoisotopic, not modified.SIMILARITY Belongs to the histone H2A family.UniProtQ71UI91EQUAL128EQUALReactome Database ID Release 758862427Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=8862427ReactomeR-HSA-88624272Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-8862427.2H2AFXHistone H2A.xH2a/xReactome DB_ID: 56151UniProt:P16104 H2AXH2AXH2AFXFUNCTION Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Required for checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by C-terminal phosphorylation.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA (Probable). Interacts with numerous proteins required for DNA damage signaling and repair when phosphorylated on Ser-140 (PubMed:12419185, PubMed:12607005, PubMed:15201865). These include MDC1, TP53BP1, BRCA1 and the MRN complex, composed of MRE11, RAD50, and NBN (PubMed:12419185, PubMed:12607005, PubMed:15201865). Interaction with the MRN complex is mediated at least in part by NBN (PubMed:12419185). Also interacts with DHX9/NDHII when phosphorylated on Ser-140 and MCPH1 when phosphorylated at Ser-140 or Tyr-143 (PubMed:15613478). Interacts with ARRB2; the interaction is detected in the nucleus upon OR1D2 stimulation (PubMed:16820410). Interacts with WRAP53/TCAB1 (PubMed:26734725, PubMed:27715493).SUBUNIT (Microbial infection) Interacts with Epstein-Barr virus protein EBNA6.DEVELOPMENTAL STAGE Synthesized in G1 as well as in S-phase.DOMAIN The [ST]-Q motif constitutes a recognition sequence for kinases from the PI3/PI4-kinase family.PTM Phosphorylated on Ser-140 (to form gamma-H2AX or H2AX139ph) in response to DNA double strand breaks (DSBs) generated by exogenous genotoxic agents and by stalled replication forks, and may also occur during meiotic recombination events and immunoglobulin class switching in lymphocytes. Phosphorylation can extend up to several thousand nucleosomes from the actual site of the DSB and may mark the surrounding chromatin for recruitment of proteins required for DNA damage signaling and repair. Widespread phosphorylation may also serve to amplify the damage signal or aid repair of persistent lesions. Phosphorylation of Ser-140 (H2AX139ph) in response to ionizing radiation is mediated by both ATM and PRKDC while defects in DNA replication induce Ser-140 phosphorylation (H2AX139ph) subsequent to activation of ATR and PRKDC. Dephosphorylation of Ser-140 by PP2A is required for DNA DSB repair. In meiosis, Ser-140 phosphorylation (H2AX139ph) may occur at synaptonemal complexes during leptotene as an ATM-dependent response to the formation of programmed DSBs by SPO11. Ser-140 phosphorylation (H2AX139ph) may subsequently occurs at unsynapsed regions of both autosomes and the XY bivalent during zygotene, downstream of ATR and BRCA1 activation. Ser-140 phosphorylation (H2AX139ph) may also be required for transcriptional repression of unsynapsed chromatin and meiotic sex chromosome inactivation (MSCI), whereby the X and Y chromosomes condense in pachytene to form the heterochromatic XY-body. During immunoglobulin class switch recombination in lymphocytes, Ser-140 phosphorylation (H2AX139ph) may occur at sites of DNA-recombination subsequent to activation of the activation-induced cytidine deaminase AICDA. Phosphorylation at Tyr-143 (H2AXY142ph) by BAZ1B/WSTF determines the relative recruitment of either DNA repair or pro-apoptotic factors. Phosphorylation at Tyr-143 (H2AXY142ph) favors the recruitment of APBB1/FE65 and pro-apoptosis factors such as MAPK8/JNK1, triggering apoptosis. In contrast, dephosphorylation of Tyr-143 by EYA proteins (EYA1, EYA2, EYA3 or EYA4) favors the recruitment of MDC1-containing DNA repair complexes to the tail of phosphorylated Ser-140 (H2AX139ph).PTM Monoubiquitination of Lys-120 (H2AXK119ub) by RING1 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression (By similarity). Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.PTM Acetylation at Lys-37 increases in S and G2 phases. This modification has been proposed to play a role in DNA double-strand break repair (By similarity).SIMILARITY Belongs to the histone H2A family.UniProtP161042EQUAL143EQUALReactome Database ID Release 7556151Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=56151ReactomeR-HSA-561511Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-56151.1H2AFZHistone H2A.zReactome DB_ID: 181897UniProt:P0C0S5 H2AZ1H2AZ1H2AFZH2AZFUNCTION Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochromatin. May be required for chromosome segregation during cell division.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. H2A or its variant H2AZ1 forms a heterodimer with H2B. H2AZ1 interacts with INCENP (By similarity). Interacts (via M6 cassette) with ANP32E; leading to removal of H2A.Z/H2AZ1 from the nucleosome. Heterodimer H2BC11 and H2AZ1 interacts with VPS72 (via N-terminal domain) (PubMed:26974126). Interacts with PWWP2A (PubMed:28645917). Interacts with FH (when phosphorylated by PRKDC) (PubMed:26237645).PTM Monoubiquitination of Lys-122 gives a specific tag for epigenetic transcriptional repression.PTM Acetylated on Lys-5, Lys-8, Lys-12 and Lys-14 by KAT2A; KAT2A is recruited by the XPC complex in absence of DNA damage (PubMed:31527837). Acetylated on Lys-5, Lys-8 and Lys-12 during interphase; acetylation disappears at mitosis (By similarity).PTM Monomethylated on Lys-5 and Lys-8 by SETD6. SETD6 predominantly methylates Lys-8, lys-5 being a possible secondary site.PTM Not phosphorylated.MASS SPECTROMETRY Monoisotopic, not modified.SIMILARITY Belongs to the histone H2A family.UniProtP0C0S52EQUAL128EQUALReactome Database ID Release 75181897Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181897ReactomeR-HSA-1818971Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181897.1Reactome Database ID Release 75181899Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181899ReactomeR-HSA-1818992Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181899.22Converted from EntitySet in ReactomeHistone H2BReactome DB_ID: 181911HIST1H2BKHistone H2B KReactome DB_ID: 181898UniProt:O60814 H2BC12H2BC12H2BFTHIRIP1HIST1H2BKFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.FUNCTION Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtO608142EQUAL126EQUALReactome Database ID Release 75181898Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181898ReactomeR-HSA-1818981Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181898.1HIST3H2BBHistone H2B type 12Reactome DB_ID: 181923UniProt:Q8N257 H2BU1H2BU1HIST3H2BBFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtQ8N2572EQUAL126EQUALReactome Database ID Release 75181923Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181923ReactomeR-HSA-1819231Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181923.1HIST1H2BAHistone H2B, testisReactome DB_ID: 181916UniProt:Q96A08 H2BC1H2BC1HIST1H2BATSH2BFUNCTION Variant histone specifically required to direct the transformation of dissociating nucleosomes to protamine in male germ cells (By similarity). Entirely replaces classical histone H2B prior nucleosome to protamine transition and probably acts as a nucleosome dissociating factor that creates a more dynamic chromatin, facilitating the large-scale exchange of histones (By similarity). Core component of nucleosome (By similarity). Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (By similarity). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability (By similarity). DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). Also found in fat cells, its function and the presence of post-translational modifications specific to such cells are still unclear (PubMed:21249133).SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers.TISSUE SPECIFICITY Mainly expressed in testis, and the corresponding protein is also present in mature sperm (at protein level). Also found in some fat cells.PTM Monoubiquitination at Lys-36 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-122 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM Acetylated during spermatogenesis. Acetylated form is most abundant in spermatogonia compared to spermatocytes and round spermatids (By similarity).PTM Phosphorylated at Thr-117 in spermatogonia, spermatocytes and round spermatids.PTM Methylated at Lys-118 in spermatogonia, spermatocytes and round spermatids.SIMILARITY Belongs to the histone H2B family.UniProtQ96A082EQUAL127EQUALReactome Database ID Release 75181916Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181916ReactomeR-HSA-1819161Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181916.1HIST1H2BCHistone H2B type 1-C/E/F/G/IReactome DB_ID: 181906UniProt:P62807 H2BC4H2BC4H2BFLHIST1H2BCH2BC6H2BFHHIST1H2BEH2BC7H2BFGHIST1H2BFH2BC8H2BFAHIST1H2BGH2BC10H2BFKHIST1H2BIFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.FUNCTION Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtP628072EQUAL126EQUALReactome Database ID Release 75181906Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181906ReactomeR-HSA-1819061Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181906.1HIST1H2BDHistone H2B.bReactome DB_ID: 181912UniProt:P58876 H2BC5H2BC5H2BFBHIRIP2HIST1H2BDFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM ADP-ribosylated on Ser-7 in response to DNA damage.MISCELLANEOUS The mouse orthologous protein seems not to exist.SIMILARITY Belongs to the histone H2B family.UniProtP588762EQUAL126EQUALReactome Database ID Release 75181912Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181912ReactomeR-HSA-1819121Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181912.1HIST1H2BLHistone H2B.cReactome DB_ID: 181920UniProt:Q99880 H2BC13H2BC13H2BFCHIST1H2BLFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM ADP-ribosylated on Ser-7 in response to DNA damage.SIMILARITY Belongs to the histone H2B family.UniProtQ998802EQUAL126EQUALReactome Database ID Release 75181920Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181920ReactomeR-HSA-1819201Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181920.1HIST1H2BNHistone H2B.dReactome DB_ID: 181907UniProt:Q99877 H2BC15H2BC15H2BFDHIST1H2BNFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtQ998772EQUAL126EQUALReactome Database ID Release 75181907Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181907ReactomeR-HSA-1819071Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181907.1HIST1H2BMHistone H2B.eReactome DB_ID: 181917UniProt:Q99879 H2BC14H2BC14H2BFEHIST1H2BMFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM ADP-ribosylated on Ser-7 in response to DNA damage.SIMILARITY Belongs to the histone H2B family.UniProtQ998792EQUAL126EQUALReactome Database ID Release 75181917Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181917ReactomeR-HSA-1819171Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181917.1HIST1H2BBHistone H2B.fReactome DB_ID: 181903UniProt:P33778 H2BC3H2BC3H2BFFHIST1H2BBFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtP337782EQUAL126EQUALReactome Database ID Release 75181903Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181903ReactomeR-HSA-1819031Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181903.1HIST1H2BHHistone H2B.jReactome DB_ID: 181915UniProt:Q93079 H2BC9H2BC9H2BFJHIST1H2BHFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers (Probable). The octamer wraps approximately 147 bp of DNA (Probable). Found in a complex with PPAR9; DTX3L AND STAT1; the interaction is likely to induce DTX3L-mediated ubiquitination of H2BC9/H2BJ (PubMed:26479788).PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons (PubMed:16627869). Monoubiquitinated by DTX3L upon encephalomyocarditis virus (EMCV)-mediated infection (PubMed:26479788).PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtQ930792EQUAL126EQUALReactome Database ID Release 75181915Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181915ReactomeR-HSA-1819151Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181915.1HIST1H2BOHistone H2B.nReactome DB_ID: 181910UniProt:P23527 H2BC17H2BC17H2BFHH2BFNHIST1H2BOFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.MISCELLANEOUS The mouse orthologous protein seems not to exist.SIMILARITY Belongs to the histone H2B family.UniProtP235272EQUAL126EQUALReactome Database ID Release 75181910Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181910ReactomeR-HSA-1819101Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181910.1HIST2H2BEHistone H2B.qReactome DB_ID: 181908UniProt:Q16778 H2BC21H2BC21H2BFQHIST2H2BEFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.FUNCTION Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtQ167782EQUAL126EQUALReactome Database ID Release 75181908Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181908ReactomeR-HSA-1819081Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181908.1HIST1H2BJHistone H2B.rReactome DB_ID: 181900UniProt:P06899 H2BC11H2BC11H2BFRHIST1H2BJFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.FUNCTION Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. Heterodimer H2BC11 and H2AZ1 interacts with VPS72 (via N-terminal domain) (PubMed:26974126).PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtP068992EQUAL126EQUALReactome Database ID Release 75181900Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181900ReactomeR-HSA-1819001Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181900.1H2BFSHistone H2B.sReactome DB_ID: 181904UniProt:P57053 H2BS1H2BS1H2BFSFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.FUNCTION Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Monoubiquitination at Lys-35 (H2BK34Ub) by the MSL1/MSL2 dimer is required for histone H3 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) methylation and transcription activation at specific gene loci, such as HOXA9 and MEIS1 loci. Similarly, monoubiquitination at Lys-121 (H2BK120Ub) by the RNF20/40 complex gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation. It also functions cooperatively with the FACT dimer to stimulate elongation by RNA polymerase II. H2BK120Ub also acts as a regulator of mRNA splicing: deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons.PTM Phosphorylation at Ser-37 (H2BS36ph) by AMPK in response to stress promotes transcription (By similarity). Phosphorylated on Ser-15 (H2BS14ph) by STK4/MST1 during apoptosis; which facilitates apoptotic chromatin condensation. Also phosphorylated on Ser-15 in response to DNA double strand breaks (DSBs), and in correlation with somatic hypermutation and immunoglobulin class-switch recombination.PTM GlcNAcylation at Ser-113 promotes monoubiquitination of Lys-121. It fluctuates in response to extracellular glucose, and associates with transcribed genes (By similarity).PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.SIMILARITY Belongs to the histone H2B family.UniProtP570532EQUAL126EQUALReactome Database ID Release 75181904Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181904ReactomeR-HSA-1819041Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181904.1Reactome Database ID Release 75181911Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181911ReactomeR-HSA-1819111Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181911.12Converted from EntitySet in ReactomeHistone H3 dimethylated at lysine-9Reactome DB_ID: 427406Me2K10-HIST1H3AHistone H3.1 with dimethylated lysine9 (H3K9)Reactome DB_ID: 427378UniProt:P68431 H3C1H3C1H3FAHIST1H3AH3C2H3FLHIST1H3BH3C3H3FCHIST1H3CH3C4H3FBHIST1H3DH3C6H3FDHIST1H3EH3C7H3FIHIST1H3FH3C8H3FHHIST1H3GH3C10H3FKHIST1H3HH3C11H3FFHIST1H3IH3C12H3FJHIST1H3JFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.DEVELOPMENTAL STAGE Expressed during S phase, then expression strongly decreases as cell division slows down during the process of differentiation.PTM Acetylation is generally linked to gene activation. Acetylation on Lys-10 (H3K9ac) impairs methylation at Arg-9 (H3R8me2s). Acetylation on Lys-19 (H3K18ac) and Lys-24 (H3K24ac) favors methylation at Arg-18 (H3R17me). Acetylation at Lys-123 (H3K122ac) by EP300/p300 plays a central role in chromatin structure: localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability.PTM Citrullination at Arg-9 (H3R8ci) and/or Arg-18 (H3R17ci) by PADI4 impairs methylation and represses transcription.PTM Asymmetric dimethylation at Arg-18 (H3R17me2a) by CARM1 is linked to gene activation. Symmetric dimethylation at Arg-9 (H3R8me2s) by PRMT5 is linked to gene repression. Asymmetric dimethylation at Arg-3 (H3R2me2a) by PRMT6 is linked to gene repression and is mutually exclusive with H3 Lys-5 methylation (H3K4me2 and H3K4me3). H3R2me2a is present at the 3' of genes regardless of their transcription state and is enriched on inactive promoters, while it is absent on active promoters.PTM Methylation at Lys-5 (H3K4me), Lys-37 (H3K36me) and Lys-80 (H3K79me) are linked to gene activation. Methylation at Lys-5 (H3K4me) facilitates subsequent acetylation of H3 and H4. Methylation at Lys-80 (H3K79me) is associated with DNA double-strand break (DSB) responses and is a specific target for TP53BP1. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are linked to gene repression. Methylation at Lys-10 (H3K9me) is a specific target for HP1 proteins (CBX1, CBX3 and CBX5) and prevents subsequent phosphorylation at Ser-11 (H3S10ph) and acetylation of H3 and H4. Methylation at Lys-5 (H3K4me) and Lys-80 (H3K79me) require preliminary monoubiquitination of H2B at 'Lys-120'. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are enriched in inactive X chromosome chromatin. Monomethylation at Lys-57 (H3K56me1) by EHMT2/G9A in G1 phase promotes interaction with PCNA and is required for DNA replication.PTM Phosphorylated at Thr-4 (H3T3ph) by HASPIN during prophase and dephosphorylated during anaphase. Phosphorylation at Ser-11 (H3S10ph) by AURKB is crucial for chromosome condensation and cell-cycle progression during mitosis and meiosis. In addition phosphorylation at Ser-11 (H3S10ph) by RPS6KA4 and RPS6KA5 is important during interphase because it enables the transcription of genes following external stimulation, like mitogens, stress, growth factors or UV irradiation and result in the activation of genes, such as c-fos and c-jun. Phosphorylation at Ser-11 (H3S10ph), which is linked to gene activation, prevents methylation at Lys-10 (H3K9me) but facilitates acetylation of H3 and H4. Phosphorylation at Ser-11 (H3S10ph) by AURKB mediates the dissociation of HP1 proteins (CBX1, CBX3 and CBX5) from heterochromatin. Phosphorylation at Ser-11 (H3S10ph) is also an essential regulatory mechanism for neoplastic cell transformation. Phosphorylated at Ser-29 (H3S28ph) by MAP3K20 isoform 1, RPS6KA5 or AURKB during mitosis or upon ultraviolet B irradiation. Phosphorylation at Thr-7 (H3T6ph) by PRKCB is a specific tag for epigenetic transcriptional activation that prevents demethylation of Lys-5 (H3K4me) by LSD1/KDM1A. At centromeres, specifically phosphorylated at Thr-12 (H3T11ph) from prophase to early anaphase, by DAPK3 and PKN1. Phosphorylation at Thr-12 (H3T11ph) by PKN1 is a specific tag for epigenetic transcriptional activation that promotes demethylation of Lys-10 (H3K9me) by KDM4C/JMJD2C. Phosphorylation at Thr-12 (H3T11ph) by chromatin-associated CHEK1 regulates the transcription of cell cycle regulatory genes by modulating acetylation of Lys-10 (H3K9ac). Phosphorylation at Tyr-42 (H3Y41ph) by JAK2 promotes exclusion of CBX5 (HP1 alpha) from chromatin.PTM Monoubiquitinated by RAG1 in lymphoid cells, monoubiquitination is required for V(D)J recombination (By similarity). Ubiquitinated by the CUL4-DDB-RBX1 complex in response to ultraviolet irradiation. This may weaken the interaction between histones and DNA and facilitate DNA accessibility to repair proteins.PTM Lysine deamination at Lys-5 (H3K4all) to form allysine is mediated by LOXL2. Allysine formation by LOXL2 only takes place on H3K4me3 and results in gene repression.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM Butyrylation of histones marks active promoters and competes with histone acetylation. It is present during late spermatogenesis.PTM Succinylation at Lys-80 (H3K79succ) by KAT2A takes place with a maximum frequency around the transcription start sites of genes (PubMed:29211711). It gives a specific tag for epigenetic transcription activation (PubMed:29211711). Desuccinylation at Lys-123 (H3K122succ) by SIRT7 in response to DNA damage promotes chromatin condensation and double-strand breaks (DSBs) repair (PubMed:27436229).PTM Serine ADP-ribosylation constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:30257210). Serine ADP-ribosylation at Ser-11 (H3S10ADPr) is mutually exclusive with phosphorylation at Ser-11 (H3S10ph) and impairs acetylation at Lys-10 (H3K9ac) (PubMed:30257210).DISEASE HIST1H3B or HIST1H3C mutations affecting residue Lys-37 of histone H3.1 are involved in the pathogenesis of pediatric undifferentiated soft tissue sarcomas. The mechanism through which mutations lead to tumorigenesis involves altered histones methylation with gain of global H3K27 methylation, altered Polycomb repressive complex 1 (PRC1) activity, aberrant epigenetic regulation of gene expression and impaired differentiation of mesenchimal progenitor cells.MISCELLANEOUS This histone is only present in mammals and is enriched in acetylation of Lys-15 and dimethylation of Lys-10 (H3K9me2).SIMILARITY Belongs to the histone H3 family.CAUTION The original paper reporting lysine deamination at Lys-5 by LOXL2 has been retracted due to inappropriate manipulation of figure data (PubMed:22483618, PubMed:27392148). However, this modification was confirmed in a subsequent publication (PubMed:27735137).UniProtP6843110EQUALN6,N6-dimethyl-L-lysineMODMOD:000842EQUAL136EQUALReactome Database ID Release 75427378Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427378ReactomeR-HSA-4273781Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427378.1Me2K-10-HIST2H3AHistone H3.2 with dimethylated lysine9 (H3K9)Reactome DB_ID: 427407UniProt:Q71DI3 H3C15H3C15HIST2H3AH3C14H3F2H3FMHIST2H3CH3C13HIST2H3DFUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. During nucleosome assembly the chaperone ASF1A interacts with the histone H3-H4 heterodimer.DEVELOPMENTAL STAGE Expressed during S phase, then expression strongly decreases as cell division slows down during the process of differentiation.PTM Acetylation is generally linked to gene activation. Acetylation on Lys-10 (H3K9ac) impairs methylation at Arg-9 (H3R8me2s). Acetylation on Lys-19 (H3K18ac) and Lys-24 (H3K24ac) favors methylation at Arg-18 (H3R17me). Acetylation at Lys-123 (H3K122ac) by EP300/p300 plays a central role in chromatin structure: localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability.PTM Citrullination at Arg-9 (H3R8ci) and/or Arg-18 (H3R17ci) by PADI4 impairs methylation and represses transcription.PTM Asymmetric dimethylation at Arg-18 (H3R17me2a) by CARM1 is linked to gene activation. Symmetric dimethylation at Arg-9 (H3R8me2s) by PRMT5 is linked to gene repression. Asymmetric dimethylation at Arg-3 (H3R2me2a) by PRMT6 is linked to gene repression and is mutually exclusive with H3 Lys-5 methylation (H3K4me2 and H3K4me3). H3R2me2a is present at the 3' of genes regardless of their transcription state and is enriched on inactive promoters, while it is absent on active promoters.PTM Methylation at Lys-5 (H3K4me), Lys-37 (H3K36me) and Lys-80 (H3K79me) are linked to gene activation. Methylation at Lys-5 (H3K4me) facilitates subsequent acetylation of H3 and H4. Methylation at Lys-80 (H3K79me) is associated with DNA double-strand break (DSB) responses and is a specific target for TP53BP1. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are linked to gene repression. Methylation at Lys-10 (H3K9me) is a specific target for HP1 proteins (CBX1, CBX3 and CBX5) and prevents subsequent phosphorylation at Ser-11 (H3S10ph) and acetylation of H3 and H4. Methylation at Lys-5 (H3K4me) and Lys-80 (H3K79me) require preliminary monoubiquitination of H2B at 'Lys-120'. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are enriched in inactive X chromosome chromatin. Monomethylation at Lys-57 (H3K56me1) by EHMT2/G9A in G1 phase promotes interaction with PCNA and is required for DNA replication.PTM Phosphorylated at Thr-4 (H3T3ph) by HASPIN during prophase and dephosphorylated during anaphase. Phosphorylation at Ser-11 (H3S10ph) by AURKB is crucial for chromosome condensation and cell-cycle progression during mitosis and meiosis. In addition phosphorylation at Ser-11 (H3S10ph) by RPS6KA4 and RPS6KA5 is important during interphase because it enables the transcription of genes following external stimulation, like mitogens, stress, growth factors or UV irradiation and result in the activation of genes, such as c-fos and c-jun. Phosphorylation at Ser-11 (H3S10ph), which is linked to gene activation, prevents methylation at Lys-10 (H3K9me) but facilitates acetylation of H3 and H4. Phosphorylation at Ser-11 (H3S10ph) by AURKB mediates the dissociation of HP1 proteins (CBX1, CBX3 and CBX5) from heterochromatin. Phosphorylation at Ser-11 (H3S10ph) is also an essential regulatory mechanism for neoplastic cell transformation. Phosphorylated at Ser-29 (H3S28ph) by MAP3K20 isoform 1, RPS6KA5 or AURKB during mitosis or upon ultraviolet B irradiation. Phosphorylation at Thr-7 (H3T6ph) by PRKCB is a specific tag for epigenetic transcriptional activation that prevents demethylation of Lys-5 (H3K4me) by LSD1/KDM1A. At centromeres, specifically phosphorylated at Thr-12 (H3T11ph) from prophase to early anaphase, by DAPK3 and PKN1. Phosphorylation at Thr-12 (H3T11ph) by PKN1 is a specific tag for epigenetic transcriptional activation that promotes demethylation of Lys-10 (H3K9me) by KDM4C/JMJD2C. Phosphorylation at Tyr-42 (H3Y41ph) by JAK2 promotes exclusion of CBX5 (HP1 alpha) from chromatin.PTM Monoubiquitinated by RAG1 in lymphoid cells, monoubiquitination is required for V(D)J recombination. Ubiquitinated by the CUL4-DDB-RBX1 complex in response to ultraviolet irradiation. This may weaken the interaction between histones and DNA and facilitate DNA accessibility to repair proteins.PTM Lysine deamination at Lys-5 (H3K4all) to form allysine is mediated by LOXL2. Allysine formation by LOXL2 only takes place on H3K4me3 and results in gene repression.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM Butyrylation of histones marks active promoters and competes with histone acetylation. It is present during late spermatogenesis.PTM Succinylation at Lys-80 (H3K79succ) by KAT2A takes place with a maximum frequency around the transcription start sites of genes (PubMed:29211711). It gives a specific tag for epigenetic transcription activation (PubMed:29211711). Desuccinylation at Lys-123 (H3K122succ) by SIRT7 in response to DNA damage promotes chromatin condensation and double-strand breaks (DSBs) repair (PubMed:27436229).PTM Serine ADP-ribosylation constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:29480802). Serine ADP-ribosylation at Ser-11 (H3S10ADPr) is mutually exclusive with phosphorylation at Ser-11 (H3S10ph) and impairs acetylation at Lys-10 (H3K9ac) (PubMed:30257210).SIMILARITY Belongs to the histone H3 family.CAUTION The original paper reporting lysine deamination at Lys-5 by LOXL2 has been retracted due to inappropriate manipulation of figure data (PubMed:22483618, PubMed:27392148). However, this modification was confirmed in a subsequent publication (PubMed:27735137).UniProtQ71DI310EQUAL2EQUAL136EQUALReactome Database ID Release 75427407Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427407ReactomeR-HSA-4274071Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427407.1Me2K-10-H3F3AHistone H3.3 with dimethylated lysine9 (H3K9)Reactome DB_ID: 427324UniProt:P84243 H3-3AH3-3AH3.3AH3F3H3F3APP781H3-3BH3.3BH3F3BFUNCTION Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. Interacts with HIRA, a chaperone required for its incorporation into nucleosomes. Interacts with ZMYND11; when trimethylated at 'Lys-36' (H3.3K36me3).DEVELOPMENTAL STAGE Expressed throughout the cell cycle independently of DNA synthesis.DOMAIN Specific interaction of trimethylated form at 'Lys-36' (H3.3K36me3) with ZMYND11 is mediated by the encapsulation of Ser-32 residue with a composite pocket formed by the tandem bromo-PWWP domains.PTM Acetylation is generally linked to gene activation. Acetylation on Lys-10 (H3K9ac) impairs methylation at Arg-9 (H3R8me2s). Acetylation on Lys-19 (H3K18ac) and Lys-24 (H3K24ac) favors methylation at Arg-18 (H3R17me). Acetylation at Lys-123 (H3K122ac) by EP300/p300 plays a central role in chromatin structure: localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability.PTM Citrullination at Arg-9 (H3R8ci) and/or Arg-18 (H3R17ci) by PADI4 impairs methylation and represses transcription.PTM Asymmetric dimethylation at Arg-18 (H3R17me2a) by CARM1 is linked to gene activation. Symmetric dimethylation at Arg-9 (H3R8me2s) by PRMT5 is linked to gene repression. Asymmetric dimethylation at Arg-3 (H3R2me2a) by PRMT6 is linked to gene repression and is mutually exclusive with H3 Lys-5 methylation (H3K4me2 and H3K4me3). H3R2me2a is present at the 3' of genes regardless of their transcription state and is enriched on inactive promoters, while it is absent on active promoters.PTM Specifically enriched in modifications associated with active chromatin such as methylation at Lys-5 (H3K4me), Lys-37 and Lys-80. Methylation at Lys-5 (H3K4me) facilitates subsequent acetylation of H3 and H4. Methylation at Lys-80 (H3K79me) is associated with DNA double-strand break (DSB) responses and is a specific target for TP53BP1. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me), which are linked to gene repression, are underrepresented. Methylation at Lys-10 (H3K9me) is a specific target for HP1 proteins (CBX1, CBX3 and CBX5) and prevents subsequent phosphorylation at Ser-11 (H3S10ph) and acetylation of H3 and H4. Methylation at Lys-5 (H3K4me) and Lys-80 (H3K79me) require preliminary monoubiquitination of H2B at 'Lys-120'. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are enriched in inactive X chromosome chromatin. Monomethylation at Lys-57 (H3K56me1) by EHMT2/G9A in G1 phase promotes interaction with PCNA and is required for DNA replication.PTM Phosphorylated at Thr-4 (H3T3ph) by HASPIN during prophase and dephosphorylated during anaphase. Phosphorylation at Ser-11 (H3S10ph) by AURKB is crucial for chromosome condensation and cell-cycle progression during mitosis and meiosis. In addition phosphorylation at Ser-11 (H3S10ph) by RPS6KA4 and RPS6KA5 is important during interphase because it enables the transcription of genes following external stimulation, like mitogens, stress, growth factors or UV irradiation and result in the activation of genes, such as c-fos and c-jun. Phosphorylation at Ser-11 (H3S10ph), which is linked to gene activation, prevents methylation at Lys-10 (H3K9me) but facilitates acetylation of H3 and H4. Phosphorylation at Ser-11 (H3S10ph) by AURKB mediates the dissociation of HP1 proteins (CBX1, CBX3 and CBX5) from heterochromatin. Phosphorylation at Ser-11 (H3S10ph) is also an essential regulatory mechanism for neoplastic cell transformation. Phosphorylated at Ser-29 (H3S28ph) by MAP3K20 isoform 1, RPS6KA5 or AURKB during mitosis or upon ultraviolet B irradiation. Phosphorylation at Thr-7 (H3T6ph) by PRKCB is a specific tag for epigenetic transcriptional activation that prevents demethylation of Lys-5 (H3K4me) by LSD1/KDM1A. At centromeres, specifically phosphorylated at Thr-12 (H3T11ph) from prophase to early anaphase, by DAPK3 and PKN1. Phosphorylation at Thr-12 (H3T11ph) by PKN1 is a specific tag for epigenetic transcriptional activation that promotes demethylation of Lys-10 (H3K9me) by KDM4C/JMJD2C. Phosphorylation at Tyr-42 (H3Y41ph) by JAK2 promotes exclusion of CBX5 (HP1 alpha) from chromatin. Phosphorylation on Ser-32 (H3S31ph) is specific to regions bordering centromeres in metaphase chromosomes.PTM Ubiquitinated. Monoubiquitinated by RAG1 in lymphoid cells, monoubiquitination is required for V(D)J recombination (By similarity).PTM Lysine deamination at Lys-5 (H3K4all) to form allysine is mediated by LOXL2. Allysine formation by LOXL2 only takes place on H3K4me3 and results in gene repression.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM Butyrylation of histones marks active promoters and competes with histone acetylation. It is present during late spermatogenesis.PTM Succinylation at Lys-80 (H3K79succ) by KAT2A takes place with a maximum frequency around the transcription start sites of genes (PubMed:29211711). It gives a specific tag for epigenetic transcription activation (PubMed:29211711). Desuccinylation at Lys-123 (H3K122succ) by SIRT7 in response to DNA damage promotes chromatin condensation and double-strand breaks (DSBs) repair (PubMed:27436229).PTM Serine ADP-ribosylation constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:29480802). Serine ADP-ribosylation at Ser-11 (H3S10ADPr) is mutually exclusive with phosphorylation at Ser-11 (H3S10ph) and impairs acetylation at Lys-10 (H3K9ac) (PubMed:30257210).DISEASE H3F3A and H3F3B mutations affecting residues involved in post-translational modifications of histone H3.3 are implicated in the pathogenesis of some bone and cartilage neoplasms. Mutations have been found with high prevalence in chondroblastoma and giant cell tumors of bone, and with low frequency in osteosarcoma, conventional chondrosarcoma and clear cell chondrosarcoma. Chondroblastoma samples frequently carry a H3F3B mutation affecting residue Lys-37 (H3K36), although H3F3A is mutated in some cases. Most giant cell tumors of bone harbor H3F3A mutations affecting residue Gly-35 (H3G34).SIMILARITY Belongs to the histone H3 family.CAUTION The original paper reporting lysine deamination at Lys-5 by LOXL2 has been retracted due to inappropriate manipulation of figure data (PubMed:22483618, PubMed:27392148). However, this modification was confirmed in a subsequent publication (PubMed:27735137).UniProtP8424310EQUAL2EQUAL136EQUALReactome Database ID Release 75427324Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427324ReactomeR-HSA-4273241Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427324.1Reactome Database ID Release 75427406Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427406ReactomeR-HSA-4274061Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427406.12HIST1H4Histone H4HIST1H4AHIST1H4BHIST1H4CHIST1H4DHIST1H4EHIST1H4FHIST1H4HHIST1H4IHIST1H4JHIST1H4KHIST1H4LHIST2H4AHIST2H4BReactome DB_ID: 181902UniProt:P62805 H4C1H4C1H4/AH4FAHIST1H4AH4C2H4/IH4FIHIST1H4BH4C3H4/GH4FGHIST1H4CH4C4H4/BH4FBHIST1H4DH4C5H4/JH4FJHIST1H4EH4C6H4/CH4FCHIST1H4FH4C8H4/HH4FHHIST1H4HH4C9H4/MH4FMHIST1H4IH4C11H4/EH4FEHIST1H4JH4C12H4/DH4FDHIST1H4KH4C13H4/KH4FKHIST1H4LH4C14H4/NH4F2H4FNHIST2H4HIST2H4AH4C15H4/OH4FOHIST2H4BH4-16HIST4H4FUNCTION Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.SUBUNIT The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.PTM Acetylation at Lys-6 (H4K5ac), Lys-9 (H4K8ac), Lys-13 (H4K12ac) and Lys-17 (H4K16ac) occurs in coding regions of the genome but not in heterochromatin.PTM Citrullination at Arg-4 (H4R3ci) by PADI4 impairs methylation.PTM Monomethylation and asymmetric dimethylation at Arg-4 (H4R3me1 and H4R3me2a, respectively) by PRMT1 favors acetylation at Lys-9 (H4K8ac) and Lys-13 (H4K12ac). Demethylation is performed by JMJD6. Symmetric dimethylation on Arg-4 (H4R3me2s) by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.PTM Monomethylated, dimethylated or trimethylated at Lys-21 (H4K20me1, H4K20me2, H4K20me3) (PubMed:12086618, PubMed:15964846, PubMed:17967882). Monomethylation is performed by KMT5A/SET8 (PubMed:15964846). Dimethylation and trimethylation is performed by KMT5B and KMT5C and induces gene silencing (By similarity). Monomethylated at Lys-13 (H4K12me1) by N6AMT1; H4K12me1 modification is present at the promoters of numerous genes encoding cell cycle regulators (PubMed:31061526).PTM Phosphorylated by PAK2 at Ser-48 (H4S47ph). This phosphorylation increases the association of H3.3-H4 with the histone chaperone HIRA, thus promoting nucleosome assembly of H3.3-H4 and inhibiting nucleosome assembly of H3.1-H4.PTM Ubiquitinated by the CUL4-DDB-RBX1 complex in response to ultraviolet irradiation. This may weaken the interaction between histones and DNA and facilitate DNA accessibility to repair proteins. Monoubiquitinated at Lys-92 of histone H4 (H4K91ub1) in response to DNA damage. The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 Lys-21 methylation (H4K20me).PTM Ufmylated; monofmylated by UFL1 at Lys-32 (H4K31Ufm1) in response to DNA damage.PTM Sumoylated, which is associated with transcriptional repression.PTM Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.PTM Butyrylation of histones marks active promoters and competes with histone acetylation.PTM Glutarylation at Lys-92 (H4K91glu) destabilizes nucleosomes by promoting dissociation of the H2A-H2B dimers from nucleosomes.DISEASE Chromosomal aberrations involving HISTONE H4 is a cause of B-cell non-Hodgkin lymphomas (B-cell NHL). Translocation t(3;6)(q27;p21), with BCL6.SIMILARITY Belongs to the histone H4 family.UniProtP628052EQUAL103EQUALReactome Database ID Release 75181902Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=181902ReactomeR-HSA-1819021Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-181902.12Reactome Database ID Release 75427331Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427331ReactomeR-HSA-4273311Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427331.11Reactome Database ID Release 753211683Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=3211683ReactomeR-HSA-32116831Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-3211683.1KMT1ASUV39H1Histone-lysine N-methyltransferase SUV39H1SUV91_HUMANReactome DB_ID: 427517UniProt:O43463 SUV39H1SUV39H1KMT1ASUV39HFUNCTION Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3 using monomethylated H3 'Lys-9' as substrate. Also weakly methylates histone H1 (in vitro). H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin at pericentric and telomere regions. H3 'Lys-9' trimethylation is also required to direct DNA methylation at pericentric repeats. SUV39H1 is targeted to histone H3 via its interaction with RB1 and is involved in many processes, such as repression of MYOD1-stimulated differentiation, regulation of the control switch for exiting the cell cycle and entering differentiation, repression by the PML-RARA fusion protein, BMP-induced repression, repression of switch recombination to IgA and regulation of telomere length. Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Recruited by the large PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1, contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation.ACTIVITY REGULATION Inhibited by S-adenosyl-L-homocysteine. Negatively regulated by CCAR2.SUBUNIT Interacts with H3 and H4 histones. Interacts with GFI1B, DNMT3B, CBX1, CBX4, CCAR2, MBD1, RUNX1, RUNX3, MYOD1, SMAD5 and RB1. Interacts with SBF1 through the SET domain. Interacts with HDAC1 and HDAC2 through the N-terminus and associates with the core histone deacetylase complex composed of HDAC1, HDAC2, RBBP4 and RBBP7. Component of the eNoSC complex, composed of SIRT1, SUV39H1 and RRP8. Interacts (via SET domain) with MECOM; enhances MECOM transcriptional repression activity. Interacts with LMNA; the interaction increases stability of SUV39H1. The large PER complex involved in the histone methylation is composed of at least PER2, CBX3, TRIM28, SUV39H1 and/or SUV39H2; CBX3 mediates the formation of the complex.SUBUNIT (Microbial infection) Interacts with HTLV-1 Tax protein, leading to abrogate Tax transactivation of HTLV-1 LTR.DEVELOPMENTAL STAGE Accumulates during mitosis at centromeres during prometaphase, but dissociates from the centromere at the meta- to anaphase transition.DOMAIN Although the SET domain contains the active site of enzymatic activity, both pre-SET and post-SET domains are required for methyltransferase activity. The SET domain also participates in stable binding to heterochromatin.DOMAIN In the pre-SET domain, Cys residues bind 3 zinc ions that are arranged in a triangular cluster; some of these Cys residues contribute to the binding of two zinc ions within the cluster.PTM Phosphorylated on serine residues, and to a lesser degree, on threonine residues. The phosphorylated form is stabilized by SBF1 and is less active in its transcriptional repressor function.PTM Acetylated at Lys-266, leading to inhibition of enzyme activity. SIRT1-mediated deacetylation relieves this inhibition.SIMILARITY Belongs to the class V-like SAM-binding methyltransferase superfamily. Histone-lysine methyltransferase family. Suvar3-9 subfamily.UniProtO434631EQUAL412EQUALReactome Database ID Release 75427517Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427517ReactomeR-HSA-4275171Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427517.1eNoSCEnergy-dependent Nucleolar Silencing ComplexReactome DB_ID: 4275101111Reactome Database ID Release 75427510Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427510ReactomeR-HSA-4275101Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427510.1ComplexPortalCPX-467Reactome Database ID Release 75427528Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427528ReactomeR-HSA-4275283Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427528.318485871Pubmed2008Epigenetic control of rDNA loci in response to intracellular energy statusMurayama, AOhmori, KFujimura, AMinami, HYasuzawa-Tanaka, KKuroda, TOie, SDaitoku, HOkuwaki, MNagata, KFukamizu, AKimura, KShimizu, TYanagisawa, JCell 133:627-39INHIBITIONReactome Database ID Release 755096498Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5096498ReactomeR-HSA-50964981Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5096498.1LEFT-TO-RIGHT3.5.1.98eNoSC deacetylates histone H3The Sirtuin-1 (SIRT1) component of eNoSC deacetylates histone H3 at lysine-9 (Vaquero et al. 2004, Murayama et al. 2008). The reaction uses nicotinamide adenine dinucleotide (NAD) as the acceptor of the acetyl group and generates nicotinamide and 1-O-acetyl-ADP-ribose as products (Vaquero et al. 2004). The use of NAD links the reaction to the overall energy balance of the cell. Cells exposed to high glucose have a greater NADH:NAD ratio and therefore lower activity of eNoSC (Murayama et al. 2008). Low glucose produces higher NAD and higher activity of eNoSC.Authored: May, B, 2009-06-22Reviewed: Voit, Renate, Grummt, Ingrid, 2014-01-21Edited: May, B, 2009-06-22NADNAD+NAD(+)Nicotinamide adenine dinucleotideDPNDiphosphopyridine nucleotideReactome DB_ID: 427523NAD(1-) [ChEBI:57540]NAD(1-)adenosine 5'-{3-[1-(3-carbamoylpyridinio)-1,4-anhydro-D-ribitol-5-yl] diphosphate}NAD(+)NAD anionChEBICHEBI:57540Reactome Database ID Release 75427523Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427523ReactomeR-ALL-4275234Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-427523.4COMPOUNDC00003Chromatin with acetylated H3Reactome DB_ID: 32117271Nucleosome (H3K9ac, H3K14ac)Nucleosome with H3 Acetylated Lysine-9 and Lysine-14Reactome DB_ID: 43376022Converted from EntitySet in ReactomeHistone H3 (H3K9ac, H3K14ac)Reactome DB_ID: 4275222xAcK-HIST1H3AHistone H3.1 with acetylated lysine-9 and lysine-14Reactome DB_ID: 42750710EQUALN6-acetyl-L-lysineMODMOD:0006415EQUAL2EQUAL136EQUALReactome Database ID Release 75427507Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427507ReactomeR-HSA-4275071Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427507.12xAcK-HIST2H3AHistone H3.2 with acetyated lysine-9 and lysine-14Reactome DB_ID: 42752510EQUAL15EQUAL2EQUAL136EQUALReactome Database ID Release 75427525Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427525ReactomeR-HSA-4275251Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427525.12xAcK-H3F3AHistone H3.3 with acetylated lysine-9 and lysine-14Reactome DB_ID: 42750410EQUAL15EQUAL2EQUAL136EQUALReactome Database ID Release 75427504Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427504ReactomeR-HSA-4275041Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427504.1Reactome Database ID Release 75427522Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427522ReactomeR-HSA-4275221Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427522.122Reactome Database ID Release 75433760Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=433760ReactomeR-HSA-4337601Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-433760.11Reactome Database ID Release 753211727Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=3211727ReactomeR-HSA-32117271Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-3211727.12'-O-acetyl-ADP-ribose2'-O-acetyl adenosine-5-diphosphoribose2''-O-acetyl-ADP-D-riboseReactome DB_ID: 4274982''-O-acetyl-ADP-D-ribose [ChEBI:76279]2''-O-acetyl-ADP-D-riboseChEBICHEBI:76279Reactome Database ID Release 75427498Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427498ReactomeR-ALL-4274983Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-427498.3NAMnicotinamideReactome DB_ID: 427497nicotinamide [ChEBI:17154]nicotinamideChEBICHEBI:17154Reactome Database ID Release 75427497Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427497ReactomeR-ALL-4274973Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-427497.3COMPOUNDC00153ChromatinReactome DB_ID: 32117361NucleosomeNucleosome (Deacetylated)Reactome DB_ID: 42740222Converted from EntitySet in ReactomeHistone H3Reactome DB_ID: 212293HIST1H3AHistone H3.1Histone H3aHistone H3bHistone H3cHistone H3dHistone H3fHistone H3hHistone H3iHistone H3jHistone H3kHistone H3lReactome DB_ID: 2120702EQUAL136EQUALReactome Database ID Release 75212070Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212070ReactomeR-HSA-2120701Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212070.1HIST2H3AHistone H3.2HIST2H3CHIST2H3DReactome DB_ID: 2122812EQUAL136EQUALReactome Database ID Release 75212281Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212281ReactomeR-HSA-2122811Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212281.1H3F3AHistone H3.3Reactome DB_ID: 2122952EQUAL136EQUALReactome Database ID Release 75212295Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212295ReactomeR-HSA-2122951Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212295.1Reactome Database ID Release 75212293Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=212293ReactomeR-HSA-2122931Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-212293.122Reactome Database ID Release 75427402Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427402ReactomeR-HSA-4274021Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427402.11Reactome Database ID Release 753211736Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=3211736ReactomeR-HSA-32117361Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-3211736.1ACTIVATIONactiveUnit: #Protein2GENE ONTOLOGYGO:0004407gene ontology term for cellular functionMIMI:0355Same Catalyst ActivityReactome Database ID Release 75427521Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427521Reactome Database ID Release 75427514Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427514ReactomeR-HSA-4275142Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427514.215469825Pubmed2004Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatinVaquero, AlejandroScher, MichaelLee, DonghoonErdjument-Bromage, HTempst, PReinberg, DannyMol. Cell 16:93-105LEFT-TO-RIGHTeNoSC dimethylates histone H3 at lysine-9The SUV39H1 component of eNoSC dimethylates histone H3 at lysine-9 (Murayama et al. 2008). The reaction depends on the prior deacetylation reaction catalyzed by the SIRT1 component of eNoSC. Histone H3 dimethylated at lysine-9 inhibits expression of rRNA genes.Authored: May, B, 2009-06-22Reviewed: Voit, Renate, Grummt, Ingrid, 2014-01-21Edited: May, B, 2009-06-22SAMAdoMetS-adenosylmethionineS-adenosyl-L-methionineReactome DB_ID: 77087S-adenosyl-L-methionine [ChEBI:15414]S-adenosyl-L-methionineChEBICHEBI:15414Reactome Database ID Release 7577087Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=77087ReactomeR-ALL-770873Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-77087.3COMPOUNDC000192SAHAdoHcyS-adenosylhomocysteineS-adenosyl-L-homocysteineReactome DB_ID: 77502S-adenosyl-L-homocysteine [ChEBI:16680]S-adenosyl-L-homocysteineChEBICHEBI:16680Reactome Database ID Release 7577502Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=77502ReactomeR-ALL-775023Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-77502.3COMPOUNDC000212ACTIVATIONactiveUnit: #Protein35GENE ONTOLOGYGO:0046974Reactome Database ID Release 75427530Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427530Reactome Database ID Release 75427527Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427527ReactomeR-HSA-4275272Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427527.2LEFT-TO-RIGHTSIRT1 deacetylates TAF1B in SL1 complexAs inferred from mouse, SIRT1, an NAD+ dependent deacetylase, deacetylates the TAF1B (TAF(1)68) subunit of the SL1 complex. Deacetylation of TAF1B inhibits transcription of rRNA genes.Authored: May, B, 2013-11-15Reviewed: Voit, Renate, Grummt, Ingrid, 2014-01-21Edited: May, B, 2013-11-15Acetylated SL1Reactome DB_ID: 73693TAF1DTATA box-binding protein-associated factor RNA polymerase I subunit DTAF1D_HUMANReactome DB_ID: 5138533UniProt:Q9H5J8 TAF1DTAF1DJOSD3FUNCTION Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits.SUBUNIT Component of the transcription factor SL1/TIF-IB complex, composed of TBP and at least TAF1A, TAF1B, TAF1C and TAF1D. Interacts with UBTF.UniProtQ9H5J81EQUAL278EQUALReactome Database ID Release 755138533Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5138533ReactomeR-HSA-51385331Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5138533.11TAF1CTAF(1)110TATA box binding proteinTBP-associated factor, RNA polymerase I, C, 110kDaReactome DB_ID: 73687UniProt:Q15572 TAF1CTAF1CFUNCTION Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits. Recruits RNA polymerase I to the rRNA gene promoter via interaction with RRN3.SUBUNIT Component of the transcription factor SL1/TIF-IB complex, composed of TBP and at least TAF1A, TAF1B, TAF1C and TAF1D. In the complex interacts directly with TBP, TAF1A and TAF1B. Interaction of the SL1/TIF-IB subunits with TBP excludes interaction of TBP with the transcription factor IID (TFIID) subunits. Interacts with MYC and RRN3. Interacts with p53/TP53; the interaction prevents the association of SL1/TIF-IB with UBTF and represses RNA polymerase I transcription.UniProtQ155721EQUAL869EQUALReactome Database ID Release 7573687Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=73687ReactomeR-HSA-736871Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-73687.11Ac-TAF1Bacetylated TAF(1)68Reactome DB_ID: 5138530UniProt:Q53T94 TAF1BTAF1BFUNCTION Component of RNA polymerase I core factor complex that acts as a GTF2B/TFIIB-like factor and plays a key role in multiple steps during transcription initiation such as pre-initiation complex (PIC) assembly and postpolymerase recruitment events in polymerase I (Pol I) transcription. Binds rDNA promoters and plays a role in Pol I recruitment as a component of the SL1/TIF-IB complex and, possibly, directly through its interaction with RRN3.SUBUNIT Interacts with FLNA (via N-terminus) (By similarity). Component of the transcription factor SL1/TIF-IB complex, composed of TBP and at least TAF1A, TAF1B, TAF1C and TAF1D. In the complex interacts directly with TBP, TAF1A and TAF1C. Interaction of the SL1/TIF-IB subunits with TBP excludes interaction of TBP with the transcription factor IID (TFIID) subunits. Interacts with TBP and RRN3.DOMAIN Although it shares weak sequence similarity with GTF2B/TFIIB, displays a similar subdomain organization as GTF2B/TFIIB, with a N-terminal zinc finger, a connecting region (composed of B-reader and B-linker regions), followed by 2 cyclin folds. The RRN7-type zinc finger plays an essential postrecruitment role in Pol I transcription at a step preceding synthesis of the first 40 nucleotides (PubMed:21921198 and PubMed:21921199).SIMILARITY Belongs to the RRN7/TAF1B family.UniProtQ53T941EQUAL588EQUALReactome Database ID Release 755138530Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5138530ReactomeR-HSA-51385301Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5138530.11TBPTATA box binding protein (Transcription initiation factor TFIID) (TATA-box factor) (TATA sequence-binding protein) (TBP)TATA-box binding proteinTATA-box factorTATA binding factorTATA sequence-binding proteinTranscription initiation factor TFIID TBP subunitReactome DB_ID: 83718UniProt:P20226 TBPTBPGTF2D1TF2DTFIIDFUNCTION General transcription factor that functions at the core of the DNA-binding multiprotein factor TFIID (PubMed:2374612, PubMed:2363050, PubMed:2194289, PubMed:9836642, PubMed:27193682). Binding of TFIID to the TATA box is the initial transcriptional step of the pre-initiation complex (PIC), playing a role in the activation of eukaryotic genes transcribed by RNA polymerase II (PubMed:2374612, PubMed:2363050, PubMed:2194289, PubMed:9836642, PubMed:27193682). Component of a BRF2-containing transcription factor complex that regulates transcription mediated by RNA polymerase III (PubMed:26638071). Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (pre-initiation complex) during RNA polymerase I-dependent transcription (PubMed:15970593). The rate of PIC formation probably is primarily dependent on the rate of association of SL1 with the rDNA promoter. SL1 is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA.SUBUNIT Binds DNA as monomer (PubMed:2374612, PubMed:2194289). Belongs to the TFIID complex together with the TBP-associated factors (TAFs) (PubMed:9836642, PubMed:27007846). Part of a TFIID-containing RNA polymerase II pre-initiation complex that is composed of TBP and at least GTF2A1, GTF2A2, GTF2E1, GTF2E2, GTF2F1, GTF2H2, GTF2H3, GTF2H4, GTF2H5, GTF2B, TCEA1, ERCC2, ERCC3, TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:27007846). Component of the transcription factor SL1/TIF-IB complex, composed of TBP and at least TAF1A, TAF1B, TAF1C and TAF1D (PubMed:7801123). Association of TBP to form either TFIID or SL1/TIF-IB appears to be mutually exclusive (PubMed:7801123). Interacts with TAF1A, TAF1B and TAF1C (PubMed:7801123). Interacts with TFIIB, NCOA6, DRAP1, DR1 and ELF3 (PubMed:10567404, PubMed:10391676, PubMed:11461703). Interacts with SPIB, SNAPC1, SNAPC2 and SNAPC4 (PubMed:10196196, PubMed:12621023). Interacts with UTF1 (PubMed:9748258). Interacts with BRF2; this interaction promotes recruitment of BRF2 to TATA box-containing promoters (PubMed:11564744, PubMed:26638071). Interacts with UBTF (PubMed:7982918). Interacts with GPBP1 (By similarity). Interacts with CITED2 (By similarity). Interacts with ATF7IP (Probable). Interacts with LLPH (By similarity). Interacts with HSF1 (via transactivation domain) (PubMed:11005381). Interacts with GTF2B (via C-terminus); this interaction with promoter-bound TBP guides RNA polymerase II into the pre-initiation complex (PIC) (PubMed:8504927).SUBUNIT (Microbial infection) Interacts with HIV-1 Tat.SUBUNIT (Microbial infection) Interacts with herpes simplex virus 1 ICP4.SUBUNIT (Microbial infection) Interacts with human adenovirus E1A protein; this interaction probably disrupts the TBP-TATA complex.TISSUE SPECIFICITY Widely expressed, with levels highest in the testis and ovary.POLYMORPHISM The poly-Gln region of TBP is highly polymorphic (25 to 42 repeats) in normal individuals and is expanded to about 47-63 repeats in spinocerebellar ataxia 17 (SCA17) patients.SIMILARITY Belongs to the TBP family.UniProtP202261EQUAL339EQUALReactome Database ID Release 7583718Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=83718ReactomeR-HSA-837181Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-83718.11TAF1ATAF(1)48TATA box binding proteinTBP-associated factor, RNA polymerase I, A, 48kDReactome DB_ID: 73689UniProt:Q15573 TAF1ATAF1AFUNCTION Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (pre-initiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits.SUBUNIT Component of the transcription factor SL1/TIF-IB complex, composed of TBP and at least TAF1A, TAF1B, TAF1C and TAF1D. In the complex interacts directly with TBP, TAF1A and TAF1B. Interaction of the SL1/TIF-IB subunits with TBP excludes interaction of TBP with the transcription factor IID (TFIID) subunits. Interacts with UBFT. Interacts with CEBPA (isoform 1 and isoform 4) (PubMed:20075868).UniProtQ155731EQUAL450EQUALReactome Database ID Release 7573689Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=73689ReactomeR-HSA-736891Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-73689.11Reactome Database ID Release 7573693Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=73693ReactomeR-HSA-736931Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-73693.1SL1Reactome DB_ID: 73692TAF1BTAF(1)68Reactome DB_ID: 736911EQUAL588EQUALReactome Database ID Release 7573691Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=73691ReactomeR-HSA-736911Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-73691.111111Reactome Database ID Release 7573692Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=73692ReactomeR-HSA-736921Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-73692.1ACTIVATIONGENE ONTOLOGYGO:0034979Reactome Database ID Release 755211232Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5211232Reactome Database ID Release 755211239Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=5211239ReactomeR-HSA-52112391Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-5211239.1Reactome Database ID Release 75427359Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=427359ReactomeR-HSA-4273592Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-HSA-427359.219010308Pubmed2009SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas treeSalminen, AnteroKaarniranta, KaiBiochem. Biophys. Res. Commun. 378:6-920023389Pubmed2010Linking rDNA transcription to the cellular energy supplyGrummt, IngridVoit, RenateCell Cycle 9:225-6GENE ONTOLOGYGO:0000183gene ontology term for cellular processMIMI:0359