BioPAX pathway converted from "AKT phosphorylates FOXO1A" in the Reactome database.LEFT-TO-RIGHT2.7.11AKT phosphorylates FOXO1AThis event has been computationally inferred from an event that has been demonstrated in another species.<p>The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.<p><a href='/electronic_inference_compara.html' target = 'NEW'>More details and caveats of the event inference in Reactome.</a> For details on PANTHER see also: <a href='http://www.pantherdb.org/about.jsp' target='NEW'>http://www.pantherdb.org/about.jsp</a>Foxo1FOXO1Q9R1E0Reactome DB_ID: 9726688nucleoplasmGENE ONTOLOGYGO:0005654UniProt:Q9R1E0 Foxo1Foxo1FkhrFoxo1aFUNCTION Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:12754525, PubMed:15184386, PubMed:15220471, PubMed:16917544, PubMed:17090532, PubMed:17627282, PubMed:17681146, PubMed:20519497, PubMed:20668652, PubMed:21196578, PubMed:21335550, PubMed:21471200, PubMed:22298775, PubMed:22417654, PubMed:22510882). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:17090532, PubMed:21335550). Activity suppressed by insulin (PubMed:12754525, PubMed:17627282). Main regulator of redox balance and osteoblast numbers and controls bone mass (PubMed:21471200, PubMed:22298775). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (PubMed:21471200, PubMed:22298775). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (PubMed:32103177). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (PubMed:22298775). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (PubMed:21471200). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC and PCK1 (PubMed:12754525). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (By similarity). Promotes neural cell death (By similarity). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (PubMed:21196578). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (By similarity). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (By similarity).SUBUNIT Interacts with EP300 and CREBBP; the interactions acetylate FOXO1. Interacts with the 14-3-3 proteins, YWHAG and YWHAZ; the interactions require insulin-stimulated phosphorylation on Thr-24, promote nuclear exit and loss of transcriptional activity. Interacts with SKP2; the interaction ubiquitinates FOXO1 leading to its proteosomal degradation. Interacts with PMRT1; methylates FOXO1, prevents PKB/AKT1 phosphorylation and retains FOXO1 in the nucleus (By similarity). Interacts (via an N-terminal domain) with FCOR; the interaction is direct, occurs in a forskolin-independent manner and prevents SIRT1 binding to FOXO1. Interacts (via the C-terminal half) with ATF4 (via its DNA-binding domain); the interaction occurs in osteoblasts, regulates glucose homeostasis via suppression of beta-cell proliferation and subsequent decrease in insulin production. Interacts with RUNX2; the interaction inhibits RUNX2 transcriptional activity and mediates the IGF1/insulin-dependent BGLAP expression in osteoblasts. Interacts with PPP2R1A; the interaction regulates the dephosphorylation of FOXO1 at Thr-24 and Ser-253 leading to its nuclear import. Binds to CDK1. Interacts with LRPPRC. Interacts with RUNX2; the interaction inhibits RUNX2 transcriptional activity and mediates the IGF1/insulin-dependent BGLAP expression in osteoblasts. Interacts with NLK. Interacts with SIRT1; the interaction results in the deacetylation of FOXO1 leading to activation of FOXO1-mediated transcription of genes involved in DNA repair and stress resistance. The interaction requires the presence of KRIT1 and is inhibited by FCOR. Interacts with SIRT2; the interaction is disrupted in response to oxidative stress or serum deprivation, leading to increased level of acetylated FOXO1, which promotes stress-induced autophagy by stimulating E1-like activating enzyme ATG7. Interacts (acetylated form) with ATG7; the interaction is increased in response to oxidative stress or serum deprivation and promotes the autophagic process leading to cell death. Interacts (acetylated form) with PPARG (PubMed:12754525, PubMed:15220471, PubMed:16917544, PubMed:17050673, PubMed:17681146, PubMed:19037106, PubMed:20061393, PubMed:20668652, PubMed:21471200, PubMed:22298775, PubMed:22417654, PubMed:22510882). Interacts with XBP1 isoform 2; this interaction is direct and leads to FOXO1 ubiquitination and degradation via the proteasome pathway (PubMed:21317886). Interacts (via the Fork-head domain) with CEBPA; the interaction increases when FOXO1 is deacetylated (PubMed:17090532, PubMed:17627282). Interacts with WDFY2 (PubMed:18388859). Forms a complex with WDFY2 and AKT1 (PubMed:18388859). Interacts with CRY1 (PubMed:28790135). Interacts with PPIA/CYPA; the interaction promotes FOXO1 dephosphorylation, nuclear accumulation and transcriptional activity (By similarity).TISSUE SPECIFICITY Expressed in liver, white and brown adipose tissues (at protein level).DEVELOPMENTAL STAGE In liver, barely expressed at 14.5 dpc, expression dramatically increases at 18.5 dpc. Abundantly expressed in neonate liver but levels strongly decrease in adult liver (at protein level).INDUCTION Expression is regulated by KRIT1 (PubMed:20668652). Transiently up-regulated during adipogenesis (at protein level) (PubMed:18388859).PTM Phosphorylation by NLK promotes nuclear export and inhibits the transcriptional activity. In response to growth factors, phosphorylation on Thr-24, Ser-253 and Ser-319 by PKB/AKT1 promotes nuclear export and inactivation of transactivational activity. Phosphorylation on Thr-24 is required for binding 14-3-3 proteins. Phosphorylation of Ser-253 decreases DNA-binding activity and promotes the phosphorylation of Thr-24 and Ser-316, permitting phosphorylation of Ser-319 and Ser-322, probably by CDK1, leading to nuclear exclusion and loss of function. Stress signals, such as response to oxygen or nitric oxide, attenuate the PKB/AKT1-mediated phosphorylation leading to nuclear retention. Phosphorylation of Ser-326 is independent of IGF1 and leads to reduced function. Dephosphorylated on Thr-24 and Ser-253 by PP2A in beta-cells under oxidative stress leading to nuclear retention (By similarity). Phosphorylation of Ser-246 by CDK1 disrupts binding of 14-3-3 proteins leading to nuclear accumulation and has no effect on DNA-binding nor transcriptional activity. Phosphorylation by STK4/MST1 on Ser-209, upon oxidative stress, inhibits binding to 14-3-3 proteins and nuclear export (By similarity). PPIA/CYPA promotes its dephosphorylation on Ser-253 (By similarity).PTM Ubiquitinated, leading to proteasomal degradation (PubMed:28790135). Ubiquitinated by SKP2 (By similarity).PTM Methylation inhibits PKB/AKT1-mediated phosphorylation at Ser-253, promoting nuclear retention and increasing the transcriptional activity and cell death. Methylation increased by oxidative stress.PTM Acetylation at Lys-259 and Lys-271 are necessary for autophagic cell death induction. Deacetylated by SIRT2 in response to oxidative stress or serum deprivation, thereby negatively regulating FOXO1-mediated autophagic cell death (By similarity). Once in the nucleus, acetylated by CREBBP/EP300. Acetylation diminishes the interaction with target DNA and attenuates the transcriptional activity. It increases the phosphorylation at Ser-253, and is required for the transcriptional inhibition by FCOR. Deacetylation by SIRT1 results in reactivation of the transcriptional activity (PubMed:17090532). Acetylation of FOXO1 diminishes its binding to PPARG in adipocytes. Deacetylated by SIRT2; deacetylation of FOXO1 directly increases its repressive binding to PPARG and inhibits adipocyte differentiation. Oxidative stress by hydrogen peroxide treatment appears to promote deacetylation and uncoupling of insulin-induced phosphorylation. By contrast, resveratrol acts independently of acetylation.DISRUPTION PHENOTYPE Null mice die around embryonic day 11 and exhibit abnormal angiogenesis. Defects are observed in branchial arches and there is remarkably impaired vascular development of embryos and yolk sacs. Exogeneous VEGF on FOX1-deficient endothelial cells show markedly different morphological response. Active osteocalcin/BGLAP as well as serum insulin and beta-cell and gonadal fat levels were increased, but there is no change in total fat content, lean mass, and body weight. Effect on RUNX2 activity was inhibited. FOXO1 and ATF4 double happlo-insufficient mice exhibit also an increase in insulin levels and beta cell proliferation, but there is an increase in insulin sensitivity demonstrated by an increase in expression of insulin-sensitizing hormone adiponectin. Gonadal fat levels and adipocyte numbers were decreased. Osteocalcin/BGLAP levels were unchanged.MISCELLANEOUS In an animal model of diabetes mellitus type 2 (db/db mice), beta-cell islets exhibit increased levels of PPP2R1A leading to increased dephosphorylation at Thr-24 and Ser-253 and nuclear retention of FOXO1.Mus musculusNCBI Taxonomy10090UniProtQ9R1E01EQUAL655EQUALReactome Database ID Release 759726688Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9726688ReactomeR-MMU-1993001Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-MMU-199300.1Reactomehttp://www.reactome.orgATPAdenosine 5'-triphosphateATP(4-)Reactome DB_ID: 29358ATP(4-) [ChEBI:30616]ATP(4-)ATPatpAdenosine 5'-triphosphateChEBICHEBI:30616Reactome Database ID Release 7529358Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=29358ReactomeR-ALL-293583Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-29358.3COMPOUNDC00002additional informationMIMI:03613Q9R1E0phospho-Foxo1p-T24,S256,S319-FOXO1Reactome DB_ID: 972670224EQUALO-phospho-L-threonineMODMOD:00047256EQUALO-phospho-L-serineMODMOD:00046319EQUAL1EQUAL655EQUALReactome Database ID Release 759726702Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9726702ReactomeR-MMU-1993061Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-MMU-199306.1ADPAdenosine 5'-diphosphateADP(3-)Reactome DB_ID: 113582ADP(3-) [ChEBI:456216]ADP(3-)ADP5&apos;-O-[(phosphonatooxy)phosphinato]adenosineADP trianionChEBICHEBI:456216Reactome Database ID Release 75113582Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=113582ReactomeR-ALL-1135823Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-ALL-113582.3COMPOUNDC000083ACTIVATIONConverted from EntitySet in ReactomeActive AKTp-T,p-S-AKTp-T308,S473-AKT1,(p-T309,S474-AKT2,p-T305,S472-AKT3)Reactome DB_ID: 9726682P31750phospho-Akt1p-T308,S473-AKT1Reactome DB_ID: 9726676UniProt:P31750 Akt1Akt1AktRacFUNCTION AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:21620960, PubMed:21432781). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (PubMed:9415393). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (PubMed:11579209). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (PubMed:22057101). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (PubMed:22057101). AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (By similarity). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (PubMed:10454575). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (PubMed:19778506). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) (PubMed:11282895, PubMed:18288188). AKT mediates the antiapoptotic effects of IGF-I (PubMed:11282895). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (By similarity). May be involved in the regulation of the placental development (PubMed:12783884). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3. Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation. Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation. Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity. Phosphorylation of BAD stimulates its pro-apoptotic activity. Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53. Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility. Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation. Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization. These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation. Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (By similarity). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (By similarity).ACTIVITY REGULATION Three specific sites, one in the kinase domain (Thr-308) and the two other ones in the C-terminal regulatory region (Ser-473 and Tyr-474), need to be phosphorylated for its full activation.SUBUNIT Interacts with and phosphorylated by PDPK1 (By similarity). Interacts with AGAP2 (isoform 2/PIKE-A); the interaction occurs in the presence of guanine nucleotides. Interacts with AKTIP. Interacts (via PH domain) with MTCP1, TCL1A AND TCL1B. Interacts with CDKN1B; the interaction phosphorylates CDKN1B promoting 14-3-3 binding and cell-cycle progression. Interacts with MAP3K5 and TRAF6. Interacts with BAD, PPP2R5B, STK3 and STK4. Interacts (via PH domain) with SIRT1. Interacts with SRPK2 in a phosphorylation-dependent manner. Interacts with TRIM13; the interaction ubiquitinates AKT1 leading to its proteasomal degradation. Interacts with RAF1 (By similarity). Interacts (via the C-terminus) with CCDC88A (via its C-terminus) and THEM4 (via its C-terminus). Interacts with GRB10; the interaction leads to GRB10 phosphorylation thus promoting YWHAE-binding. Interacts with KCTD20 (PubMed:24156551). Interacts with BTBD10 (PubMed:18160256). Interacts with PA2G4 (By similarity). Interacts with KIF14; the interaction is detected in the plasma membrane upon INS stimulation and promotes AKT1 phosphorylation (By similarity). Interacts with FAM83B; activates the PI3K/AKT signaling cascade (By similarity). Interacts with WDFY2 (via WD repeats 1-3) (PubMed:16792529, PubMed:20189988). Forms a complex with WDFY2 and FOXO1 (PubMed:18388859). Interacts with FAM168A (By similarity). Interacts with SYAP1 (via phosphorylated form and BSD domain); this interaction is enhanced in a mTORC2-mediated manner in response to epidermal growth factor (EGF) stimulation and activates AKT1 (PubMed:23300339). Interacts with PKHM3 (PubMed:19028694). Interacts with FKBP5/FKBP51; promoting interaction between Akt/AKT1 and PHLPP1, thereby enhancing dephosphorylation and subsequent activation of Akt/AKT1 (By similarity).TISSUE SPECIFICITY Widely expressed. Low levels found in liver with slightly higher levels present in thymus and testis.DEVELOPMENTAL STAGE Expressed in trophoblast and vessel endothelial cells of the placenta and in the brain at 14.5 dpc (at protein level).DOMAIN Binding of the PH domain to phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) following phosphatidylinositol 3-kinase alpha (PIK3CA) activity results in its targeting to the plasma membrane. The PH domain mediates interaction with TNK2 and Tyr-176 is also essential for this interaction.DOMAIN The AGC-kinase C-terminal mediates interaction with THEM4.PTM O-GlcNAcylation at Thr-305 and Thr-312 inhibits activating phosphorylation at Thr-308 via disrupting the interaction between AKT1 and PDPK1. O-GlcNAcylation at Ser-473 also probably interferes with phosphorylation at this site (By similarity).PTM Phosphorylation on Thr-308, Ser-473 and Tyr-474 is required for full activity. Activated TNK2 phosphorylates it on Tyr-176 resulting in its binding to the anionic plasma membrane phospholipid PA. This phosphorylated form localizes to the plasma membrane, where it is targeted by PDPK1 and PDPK2 for further phosphorylations on Thr-308 and Ser-473 leading to its activation. Ser-473 phosphorylation by mTORC2 favors Thr-308 phosphorylation by PDPK1. Phosphorylated at Thr-308 and Ser-473 by IKBKE and TBK1. Ser-473 phosphorylation is enhanced by signaling through activated FLT3. Ser-473 is dephosphorylated by PHLPP (By similarity). Dephosphorylated at Thr-308 and Ser-473 by PP2A phosphatase. The phosphorylated form of PPP2R5B is required for bridging AKT1 with PP2A phosphatase. Ser-473 is dephosphorylated by CPPED1, leading to termination of signaling (By similarity).PTM Ubiquitinated; undergoes both 'Lys-48'- and 'Lys-63'-linked polyubiquitination. TRAF6-induced 'Lys-63'-linked AKT1 ubiquitination is critical for phosphorylation and activation. When ubiquitinated, it translocates to the plasma membrane, where it becomes phosphorylated. When fully phosphorylated and translocated into the nucleus, undergoes 'Lys-48'-polyubiquitination catalyzed by TTC3, leading to its degradation by the proteasome. Also ubiquitinated by TRIM13 leading to its proteasomal degradation. Ubiquitinated via 'Lys-48'-linked polyubiquitination by ZNRF1, leading to its degradation by the proteasome. Phosphorylated, undergoes 'Lys-48'-linked polyubiquitination preferentially at Lys-284 catalyzed by MUL1, leading to its proteasomal degradation.PTM Acetylated on Lys-14 and Lys-20 by the histone acetyltransferases EP300 and KAT2B. Acetylation results in reduced phosphorylation and inhibition of activity. Deacetylated at Lys-14 and Lys-20 by SIRT1. SIRT1-mediated deacetylation relieves the inhibition (By similarity).DISRUPTION PHENOTYPE Show fetal growth impairment and reduced vascularization in the placenta; majority of pups died within 10 days.SIMILARITY Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. RAC subfamily.CAUTION In light of strong homologies in the primary amino acid sequence, the 3 AKT kinases were long surmised to play redundant and overlapping roles. More recent studies has brought into question the redundancy within AKT kinase isoforms and instead pointed to isoform specific functions in different cellular events and diseases. AKT1 is more specifically involved in cellular survival pathways, by inhibiting apoptotic processes; whereas AKT2 is more specific for the insulin receptor signaling pathway. Moreover, while AKT1 and AKT2 are often implicated in many aspects of cellular transformation, the 2 isoforms act in a complementary opposing manner. The role of AKT3 is less clear, though it appears to be predominantly expressed in brain.UniProtP31750308EQUAL473EQUAL1EQUAL480EQUALReactome Database ID Release 759726676Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9726676ReactomeR-MMU-1983571Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-MMU-198357.1Q60823phospho-Akt2p-T309,S474-AKT2Reactome DB_ID: 9726678UniProt:Q60823 Akt2Akt2FUNCTION AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinases, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.FUNCTION One of the few specific substrates of AKT2 identified so far is PITX2. Phosphorylation of PITX2 impairs its association with the CCND1 mRNA-stabilizing complex thus shortening the half-life of CCND1. AKT2 seems also to be the principal isoform responsible of the regulation of glucose uptake. Phosphorylates C2CD5 on 'Ser-197' during insulin-stimulated adipocytes. AKT2 is also specifically involved in skeletal muscle differentiation, one of its substrates in this process being ANKRD2. Phosphorylates CLK2 on 'Thr-343'.ACTIVITY REGULATION Two specific sites, one in the kinase domain (Thr-309) and the other in the C-terminal regulatory region (Ser-474), need to be phosphorylated for its full activation.SUBUNIT Interacts (via PH domain) with MTCP1, TCL1A AND TCL1B. Interacts with CLK2, PBH2 and TRAF6. Interacts (when phosphorylated) with CLIP3, the interaction promotes cell membrane localization (By similarity). Interacts with BTBD10 (PubMed:18160256). Interacts with KCTD20 (PubMed:24156551). Interacts with WDFY2 (via WD repeats 1-3) (PubMed:16792529, PubMed:20189988).DOMAIN Binding of the PH domain to the phosphatidylinositol 3-kinase alpha (PIK3CA) results in its targeting to the plasma membrane.PTM Phosphorylation on Thr-309 and Ser-474 is required for full activity.PTM Ubiquitinated; undergoes both 'Lys-48'- and 'Lys-63'-linked polyubiquitination. TRAF6-induced 'Lys-63'-linked AKT2 ubiquitination. When fully phosphorylated and translocated into the nucleus, undergoes 'Lys-48'-polyubiquitination catalyzed by TTC3, leading to its degradation by the proteasome (By similarity).PTM O-GlcNAcylation at Thr-306 and Thr-313 inhibits activating phosphorylation at Thr-309 via disrupting the interaction between AKT and PDK1.SIMILARITY Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. RAC subfamily.CAUTION In light of strong homologies in the primary amino acid sequence, the 3 AKT kinases were long surmised to play redundant and overlapping roles. More recent studies has brought into question the redundancy within AKT kinase isoforms and instead pointed to isoform specific functions in different cellular events and diseases. AKT1 is more specifically involved in cellular survival pathways, by inhibiting apoptotic processes; whereas AKT2 is more specific for the insulin receptor signaling pathway. Moreover, while AKT1 and AKT2 are often implicated in many aspects of cellular transformation, the 2 isoforms act in a complementary opposing manner. The role of AKT3 is less clear, though it appears to be predominantly expressed in brain.UniProtQ60823309EQUAL474EQUAL1EQUAL481EQUALReactome Database ID Release 759726678Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9726678ReactomeR-MMU-2020871Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-MMU-202087.1Q9WUA6phospho-Akt3p-T305,S472-AKT3Reactome DB_ID: 9726680UniProt:Q9WUA6Akt3UniProtQ9WUA6305EQUAL472EQUAL1EQUAL479EQUALReactome Database ID Release 759726680Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9726680ReactomeR-MMU-30093651Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-MMU-3009365.1Reactome Database ID Release 759726682Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9726682ReactomeR-MMU-2020721Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-MMU-202072.1GENE ONTOLOGYGO:0004674gene ontology term for cellular functionMIMI:0355Same Catalyst ActivityReactome Database ID Release 759726683Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9726683Reactome Database ID Release 759730002Database identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=9730002ReactomeR-MMU-2111641Reactome stable identifier. Use this URL to connect to the web page of this instance in Reactome: http://www.reactome.org/cgi-bin/eventbrowser_st_id?ST_ID=R-MMU-211164.1One or more of the isoforms of AKT catalyzes the phosphorylation of FOXO1A protein at three sites, threonine-24, serine-256, and serine-319 (Zhang et al. 2002, 2006). This reaction occurs in the nucleoplasm, and thus is dependent on the phosphorylation and nuclear import of AKT in response to upstream regulatory factors (Burgering and Kops 2002).12228231Pubmed2002Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA bindingZhang, XGan, LPan, HGuo, SHe, XOlson, STMesecar, AAdam, SUnterman, TGJ Biol Chem 277:45276-8412114024Pubmed2002Cell cycle and death control: long live ForkheadsBurgering, BMKops, GJTrends Biochem Sci 27:352-6016540465Pubmed2006Kinetic mechanism of AKT/PKB enzyme familyZhang, XZhang, SYamane, HWahl, RAli, ALofgren, JAKendall, RLJ Biol Chem 281:13949-56inferred from electronic annotationEVIDENCE CODEECO:0000203