Reactome: A Curated Pathway Database
Results 1 to 10 of 21
Pathways (13) Reactions (4) Proteins (1) Others (3)
Pathway: Immune System (Homo sapiens)
Humans are exposed to millions of potential pathogens daily, through contact, ingestion, and inhalation. Our ability to avoid infection depends on the adaptive immune system and during the first critical hours and days of exposure to a new pathogen, our innate immune system
Last changed: 2015-03-06 23:15:47

Pathway: Signal Transduction (Homo sapiens)
Signal transduction is a process in which extracellular signals elicit changes in cell state and activity. Transmembrane receptors sense changes in the cellular environment by binding ligands, such as hormones and growth factors, or reacting to other types of stimuli, such as light. Stimulation of transmembrane receptors leads to their conformational change which propagates the signal to the intracellu
Last changed: 2015-03-06 23:15:47

Pathway: GPCR downstream signaling (Homo sapiens)
G protein-coupled receptors (GPCRs) are classically defined as the receptor, G-protein and downstream effectors, the alpha subunit of the G-protein being the primary signaling molecule. However, it has become clear that this greatly oversimplifies the complexities of GPCR signaling (see Gurevich & Gurevich, 2008). The beta:gamma G-protein dimer is also involved in downstream signaling (Smrcka, 2008), a
Last changed: 2015-03-06 23:15:47

Pathway: Cytosolic sensors of pathogen-associated DNA (Homo sapiens)
Presence of pathogen-associated DNA in cytosol induces type I IFN production. Several intracellular receptors have been implicated to some degree. These include DNA-dependent activator of interferon (IFN)-regulatory factors (DAI) (also called Z-DNA-binding protein 1, ZBP1), absent in melanoma 2 (AIM2), RNA polymerase III (Pol III), IFN-inducible protein IFI16, leucine-rich repeat flightless interacting
Last changed: 2015-03-06 23:15:47

Pathway: GPCR ligand binding (Homo sapiens)
There are more than 800 G-protein coupled receptor (GPCRs) in the human genome, making it the largest receptor superfamily. GPCRs are also the largest class of drug targets, involved in virtually all physiological processes (Frederiksson 2003). GPCRs are receptors for a diverse range of ligands from large proteins to photons (Kristiansen et al. 2004) and have an equal diversity of ligand-binding mechan
Last changed: 2015-03-06 18:40:03

Pathway: Signaling by GPCR (Homo sapiens)
G protein-coupled receptors (GPCRs; 7TM receptors; seven transmembrane domain receptors; heptahelical receptors; G protein-linked receptors [GPLR]) are the largest family of transmembrane receptors in humans, accounting for more than 1% of the protein-coding capacity of the human genome. All known GPCRs share a common architecture of seven membrane-spanning helices connected by intra- and extracellular
Last changed: 2015-03-06 23:15:47

Pathway: Innate Immune System (Homo sapiens)
Innate immunity encompases the nonspecific part of immunity tha are part of an individual's natural biologic makeup
Last changed: 2015-03-06 23:15:47

Pathway: STAT6-mediated induction of chemokines (Homo sapiens)
Signal transducer and activator of transcription 6 (STAT6) may function as a signaling molecule and ... tor. The canonical activation of STAT6 in IL4 and IL13 signaling pathways is mediated by the tyrosine kinases JAK (Hebenstreit D et al. 2006). Virus-induced STAT6 activation was found to be cytokine- and JAK-independent (Chen H et al. 2011). Infection of human cells with RNA or DNA viruses resulted ...
Last changed: 2015-03-06 18:40:03

Pathway: Amine ligand-binding receptors (Homo sapiens)
The class A (rhodopsin-like) GPCRs that bind to classical biogenic amine ligands are annotated here. The amines involved (acetylcholine, adrenaline, noradrenaline, dopamine, serotonin and histamine) can all act as neurotransmitters in humans. The so-called 'trace amines', used when referring to p-tyramine, beta-phenylethylamine, tryptamine and octopamine, can also bind to recently-discovered GPCRs
Last changed: 2015-03-06 18:40:03

Pathway: STING mediated induction of host immune responses (Homo sapiens)
STING (stimulator of IFN genes; also known as MITA/ERIS/MPYS/TMEM173) is an endoplasmic reticulum (ER) resident, which is required for effective type I IFN production in response to nucleic acids. Indeed, select pathogen-derived DNA or RNA were shown to activate STING in human and mouse cells (Ishikawa H and Barber GN 2008; Ishikawa H et al. 2009; Sun W et al. 2009; Prantner D et al. 2010). Importantly
Last changed: 2015-03-06 23:15:47

1 2 3 Next >
Show all results