Reactome: A Curated Pathway Database
Results 1 to 10 of 20
Pathways (12) Reactions (4) Proteins (1) Others (3)
Protein: UniProt:P43657 LPAR6 (Homo sapiens)
Last changed: 2014-11-26 10:20:21

Pathway: Disease (Homo sapiens)
Biological processes are captured in Reactome by identifying the molecules (DNA, RNA, protein, small molecules) involved in them and describing the details of their interactions. From this molecular viewpoint, human disease pathways have three mechanistic causes: the inclusion of microbially-expressed proteins, altered functions of human proteins, or changed expression levels of otherwise functionally
Last changed: 2014-11-21 19:49:01

Pathway: Signal Transduction (Homo sapiens)
Signal transduction is a process in which extracellular signals elicit changes in cell state and activity. Transmembrane receptors sense changes in the cellular environment by binding ligands, such as hormones and growth factors, or reacting to other types of stimuli, such as light. Stimulation of transmembrane receptors leads to their conformational change which propagates the signal to the intracellu
Last changed: 2014-11-21 19:49:01

Pathway: Gastrin-CREB signalling pathway via PKC and MAPK (Homo sapiens)
Gastrin is a hormone whose main function is to stimulate secretion of hydrochloric acid by the gastric mucosa, which results in gastrin formation inhibition. This hormone also acts as a mitogenic factor for gastrointestinal epithelial cells. Gastrin has two biologically active peptide forms, G34 and G17.Gastrin gene expression is upregulated in both a number of pre-malignant conditions and in establish
Last changed: 2014-11-21 19:49:01

Pathway: GPCR downstream signaling (Homo sapiens)
G protein-coupled receptors (GPCRs) are classically defined as the receptor, G-protein and downstream effectors, the alpha subunit of the G-protein being the primary signaling molecule. However, it has become clear that this greatly oversimplifies the complexities of GPCR signaling (see Gurevich & Gurevich, 2008). The beta:gamma G-protein dimer is also involved in downstream signaling (Smrcka, 2008), a
Last changed: 2014-11-21 19:49:01

Pathway: GPCR ligand binding (Homo sapiens)
There are more than 800 G-protein coupled receptor (GPCRs) in the human genome, making it the largest receptor superfamily. GPCRs are also the largest class of drug targets, involved in virtually all physiological processes (Frederiksson 2003). GPCRs are receptors for a diverse range of ligands from large proteins to photons (Kristiansen et al. 2004) and have an equal diversity of ligand-binding mechan
Last changed: 2014-11-21 14:40:22

Pathway: Signaling by GPCR (Homo sapiens)
G protein-coupled receptors (GPCRs; 7TM receptors; seven transmembrane domain receptors; heptahelical receptors; G protein-linked receptors [GPLR]) are the largest family of transmembrane receptors in humans, accounting for more than 1% of the protein-coding capacity of the human genome. All known GPCRs share a common architecture of seven membrane-spanning helices connected by intra- and extracellular
Last changed: 2014-11-21 19:49:01

Pathway: Defective ACTH causes Obesity and Pro-opiomelanocortinin deficiency (POMCD) (Homo sapiens)
The precursor peptide pro-opiomelanocortin (POMC) gives rise to many peptide hormones through cleavage. The cleavage products corticotropin (ACTH) and beta-lipotropin give rise to smaller peptides that have distinct biologic activities: alpha-melanotropin and corticotropin-like intermediate lobe peptide (CLIP) are formed from ACTH; gamma-LPH and beta-endorphin are formed from beta-LPH. ACTH (POMC(138-1
Last changed: 2014-11-21 14:40:22

Pathway: Metabolic disorders of biological oxidation enzymes (Homo sapiens)
The ability to process xenobiotica and many endogenous compounds is called biotransformation and is catalysed by enzymes mainly in the liver of higher organisms but also a number of other organs such as kidneys, gut and lungs. Metabolism occurs in two stages; phase 1 functionalisation and phase 2 conjugation. Defects in enzymes in these two phases can lead to disease (Nebert et al. 2013, Pikuleva & Wat
Last changed: 2014-11-21 19:49:01

Pathway: G alpha (q) signalling events (Homo sapiens)
The classic signalling route for G alpha (q) is activation of phospholipase C beta thereby triggering phosphoinositide hydrolysis, calcium mobilization and protein kinase C activation. This provides a path to calcium-regulated kinases and phosphatases, GEFs, MAP kinase cassettes and other proteins that mediate cellular responses ranging from granule secretion, integrin activation, and aggregation in pl
Last changed: 2014-11-21 19:49:01

1 2 Next >
Show all results