Reactome: A Curated Pathway Database
Results 1 to 10 of 38
Pathways (25) Reactions (9) Proteins (1) Others (3)
Pathway: Disease (Homo sapiens)
Biological processes are captured in Reactome by identifying the molecules (DNA, RNA, protein, small molecules) involved in them and describing the details of their interactions. From this molecular viewpoint, human disease pathways have three mechanistic causes: the inclusion of microbially-expressed proteins, altered functions of human proteins, or changed expression levels of otherwise functionally
Last changed: 2014-11-21 19:49:01

Pathway: Membrane Trafficking (Homo sapiens)
The secretory membrane system allows a cell to regulate delivery of newly synthesized proteins, carbohydrates, and lipids to the cell surface, a necessity for growth and homeostasis. The system is made up of distinct organelles, including the endoplasmic reticulum (ER), Golgi complex, plasma membrane, and tubulovesicular transport intermediates. These organelles mediate intracellular membrane transport
Last changed: 2014-11-21 19:49:01

Pathway: Signal Transduction (Homo sapiens)
Signal transduction is a process in which extracellular signals elicit changes in cell state and activity. Transmembrane receptors sense changes in the cellular environment by binding ligands, such as hormones and growth factors, or reacting to other types of stimuli, such as light. Stimulation of transmembrane receptors leads to their conformational change which propagates the signal to the intracellu
Last changed: 2014-11-21 19:49:01

Pathway: RNF mutants show enhanced WNT signaling and proliferation (Homo sapiens)
RNF43 and related protein ZNRF3 are E3 ubiquitin ligases that negatively regulate WNT signaling by downregulating FZD receptors at the cell surface (Mukai et al, 2010; Hao et al, 2012). Frameshift loss-of-function mutations in RNF43 that enhance WNT signaling have been identified in pancreatic and colorectal cancers; the proliferation of these cells is dependent on the presence of secreted WNT, as the
Last changed: 2014-11-21 14:40:22

Pathway: TCF dependent signaling in response to WNT (Homo sapiens)
19 WNT ligands and 10 FZD receptors have been identified in human cells; interactions amongst these ligands and receptors vary in a developmental and tissue-specific manner and lead to activation of so-called 'canonical' and 'non-canonical' WNT signaling. In the canonical WNT signaling pathway, binding of a WNT ligand to the Frizzled (FZD) and lipoprotein receptor-related protein (LRP) receptors resul
Last changed: 2014-11-21 14:40:22

Pathway: XAV939 inhibits tankyrase, stabilizing AXIN (Homo sapiens)
XAV939 binds to the catalytic sites of tankyrase 1 and 2 and inhibits the ADP-ribosylation of AXIN1 and 2. Treatment of cells with XAV939 significantly increases the protein, but not the mRNA levels of AXIN1 and 2 and supports a strong increase in the level of GSK3beta-AXIN complexes. These cells also show increased phosphorylation of beta-catenin, decreased beta-catenin protein levels and a correspon
Last changed: 2014-11-21 14:40:22

Pathway: Signaling by Insulin receptor (Homo sapiens)
Insulin binding to its receptor results in receptor autophosphorylation on tyrosine residues and the tyrosine phosphorylation of insulin receptor substrates (e.g. IRS and Shc) by the insulin receptor tyrosine kinase. This allows association of IRSs with downstream effectors such as PI-3K via its Src homology 2 (SH2) domains leading to end point events such as Glut4 (Slc2a4) translocation. Shc when ty
Last changed: 2014-11-21 19:49:01

Pathway: Signaling by Wnt (Homo sapiens)
WNT signaling pathways control a wide range of developmental and adult process in metozoans including cell proliferation, cell fate decisions, cell polarity and stem cell maintenance (reviewed in Saito-Diaz et al, 2013; MacDonald et al, 2009). The pathway is named for the WNT ligands, a large family of secreted cysteine-rich glycoproteins. At least 19 WNT members have been identified in humans and mic
Last changed: 2014-11-21 14:40:22

Pathway: Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) (Homo sapiens)
Binding of IGF1 (IGF-I) or IGF2 (IGF-II) to the extracellular alpha peptides of the type 1 insulin-like growth factor receptor (IGF1R) triggers the activation of two major signaling pathways: the SOS-RAS-RAF-MAPK (ERK) pathway and the PI3K-PKB (AKT) pathway (recently reviewed in Pavelic et al. 2007, Chitnis et al. 2008, Maki et al. 2010, Parella et al. 2010, Annunziata et al. 2011, Siddle et al. 2012,
Last changed: 2014-11-21 19:49:01

Pathway: misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling (Homo sapiens)
LRP5 is subject to an in-frame missplicing event in breast and parathyroid cancers that renders the protein insensitive to inhibition by the WNT antagonist DKK1. Expression of the mutant protein results in elevated levels of active, unphosphorylated beta-catenin and enhanced TCF-dependent WNT-signaling, promoting cellular proliferation (Bjorklund et al 2007a, b; Bjorklund et al, 2009)
Last changed: 2014-11-21 14:40:22

1 2 3 4 Next >
Show all results