Reactome: A Curated Pathway Database
Results 1 to 10 of 48
Pathways (6) Reactions (19) Proteins (1) Others (22)
Protein: UniProt:P01589 IL2RA (Homo sapiens)
Last changed: 2015-03-12 14:00:50

Pathway: Immune System (Homo sapiens)
Humans are exposed to millions of potential pathogens daily, through contact, ingestion, and inhalation. Our ability to avoid infection depends on the adaptive immune system and during the first critical hours and days of exposure to a new pathogen, our innate immune system
Last changed: 2015-03-06 23:15:47

Pathway: Cytokine Signaling in Immune system (Homo sapiens)
Cytokines are small proteins that regulate and mediate immunity, inflammation, and hematopoiesis. They are secreted in response to immune stimuli, and usually act briefly, locally, at very low concentrations. Cytokines bind to specific membrane receptors, which then signal the cell via second messengers, to regulate cellular activity
Last changed: 2015-03-06 23:15:47

Pathway: Interleukin-3, 5 and GM-CSF signaling (Homo sapiens)
The Interleukin-3 (IL-3), IL-5 and Granulocyte-macrophage colony stimulating factor (GM-CSF) receptors form a family of heterodimeric receptors that have specific alpha chains but share a common beta subunit, often referred to as the common beta (Bc). Both subunits contain extracellular conserved motifs typical of the cytokine receptor superfamily. The cytoplasmic domains have limited similarity with o
Last changed: 2015-03-06 18:40:03

Pathway: Interleukin-2 signaling (Homo sapiens)
Interleukin-2 (IL-2) is a cytokine that is produced by T cells in response to antigen stimulation. Originally, IL-2 was discovered because of its potent growth factor activity on activated T cells in vitro and was therefore named 'T cell growth factor' (TCGF). However, the generation of IL-2- and IL-2 receptor-deficient mice revealed that IL-2 also plays a regulatory role in the immune system by suppre
Last changed: 2015-03-06 23:15:47

Pathway: Signaling by Interleukins (Homo sapiens)
Interleukins are low molecular weight proteins that bind to cell surface receptors and act in an autocrine and/or paracrine fashion. They were first identified as factors produced by leukocytes but are now known to be produced by many other cells throughout the body. They have pleiotropic effects on cells which bind them, impacting processes such as tissue growth and repair, hematopoietic homeostasis,
Last changed: 2015-03-06 23:15:47

Pathway: Interleukin receptor SHC signaling (Homo sapiens)
Phosphorylation of Shc at three tyrosine residues, 239, 240 (Gotoh et al. 1996) and 317 (Salcini et al. 1994) involves unidentified tyrosine kinases presumed to be part of the activated receptor complex. These phosphorylated tyrosines subsequently bind SH2 signaling proteins such as Grb2, Gab2 and SHIP that are involved in the regulation of different signaling pathways. Grb2 can associate with the guan
Last changed: 2015-03-06 10:40:16

Reaction: Phosphorylation of IL2RB Y338, Y392 or Y510 enables STAT recruitment (Homo sapiens)
Mutation analysis has shown that Y338, Y392 and Y510 are involved in IL-2-induced STAT protein binding. Phospho-tyrosines 338, 392 and 510 can each promote STAT5 activation (Gaffen et al. 1996), though Y510 appears to be the primary site for STAT5 binding (Gesbert et al. 1998). STAT3 may also be recruited to phospho-tyrosines on IL2RB and studies have shown defective IL-2 responses in STAT3-/- T cells,
Last changed: 2015-03-06 02:57:18

Reaction: SHC1 mediates cytokine-induced phosphorylation of GAB2 (Homo sapiens)
Binding of Gab2 to tyrosine phosphorylated Shc promotes the phosphorylation of Gab2 by an unknown kinase. Gab2 becomes tyrosine phosphorylated in response to IL-2 (Brockdorff et al. 2001) and IL-3 (Gu et al. 1998). Chimeric receptors were used to demonstrate that Shc is sufficient for Gab2 tyrosine phosphorylation. In response to IL-3, Grb2 was also required, reflecting that Gab2 is recruited to the ac
Last changed: 2015-03-06 10:40:16

Reaction: Interleukin-2 receptor alpha binds interleukin-2 (Homo sapiens)
The interleukin-2 receptor is a heterotrimer composed of interleukin-2 receptor alpha (IL2RA), beta (IL2RB) and gamma (IL2RG) subunits. Individually, IL2RA and IL2RB have low affinity for interleukin-2 (IL2); IL2RG has very low affinity. The IL2RA chain has a short cytoplasmic domain and consequently does not transmit an intracellular signal, but it binds IL-2 with high affinity and is required in viv
Last changed: 2015-03-06 00:07:54

1 2 3 4 5 Next >
Show all results