Reactome: A Curated Pathway Database
Results 1 to 10 of 107
Pathways (26) Reactions (42) Proteins (1) Others (38)
Protein: UniProt:P02647 APOA1 (Homo sapiens)
Last changed: 2014-11-26 10:20:21

Pathway: Transmembrane transport of small molecules (Homo sapiens)
Last changed: 2014-11-21 19:49:01

Pathway: Binding and Uptake of Ligands by Scavenger Receptors (Homo sapiens)
Scavenger receptors bind free extracellular ligands as the initial step in clearance of the ligands from the body (reviewed in Ascenzi et al. 2005, Areschoug and Gordon 2009, Nielsen et al. 2010). Some scavenger receptors, such as the CD163-haptoglobin system, are specific for only one ligand. Others, such as the SCARA receptors (SR-A receptors) are less specific, binding several ligands which share a
Last changed: 2014-11-21 14:40:22

Pathway: Disease (Homo sapiens)
Biological processes are captured in Reactome by identifying the molecules (DNA, RNA, protein, small molecules) involved in them and describing the details of their interactions. From this molecular viewpoint, human disease pathways have three mechanistic causes: the inclusion of microbially-expressed proteins, altered functions of human proteins, or changed expression levels of otherwise functionally
Last changed: 2014-11-21 19:49:01

Pathway: Signal Transduction (Homo sapiens)
Signal transduction is a process in which extracellular signals elicit changes in cell state and activity. Transmembrane receptors sense changes in the cellular environment by binding ligands, such as hormones and growth factors, or reacting to other types of stimuli, such as light. Stimulation of transmembrane receptors leads to their conformational change which propagates the signal to the intracellu
Last changed: 2014-11-21 19:49:01

Pathway: Metabolism (Homo sapiens)
Metabolic processes in human cells generate energy through the oxidation of molecules consumed in the diet and mediate the synthesis of diverse essential molecules not taken in the diet as well as the inactivation and elimination of toxic ones generated endogenously or present in the extracellular environment. The processes of energy metabolism can be classified into two groups according to whether the
Last changed: 2014-11-21 19:49:01

Pathway: Hemostasis (Homo sapiens)
Hemostasis is a physiological response that culminates in the arrest of bleeding from an injured vessel. Under normal conditions the vascular endothelium supports vasodilation, inhibits platelet adhesion and activation, suppresses coagulation, enhances fibrin cleavage and is anti-inflammatory in character. Under acute vascular trauma, vasoconstrictor mechanisms predominate and the endothelium becomes p
Last changed: 2014-11-21 19:49:01

Pathway: Amyloids (Homo sapiens)
Amyloid is a term used to describe typically extracellular deposits of aggregated proteins, sometimes known as plaques. Abnormal accumulation of amyloid is amyloidosis, a term associated with diseased organs and tissues, particularly neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntingdon's. Amyloid deposits consist predominantly of amyloid fibrils, rigid, non-branching structures th
Last changed: 2014-11-21 19:49:01

Pathway: Diseases associated with visual transduction (Homo sapiens)
The process of vision involves two stages; the retinoid cycle which supplies and regenerates the visual chromophore required for vision and phototransduction which propagates the light signal. Defects in the genes involved in the retinoid cycle cause degenerative retinal diseases. These defective genes are described here (for reviews see Travis et al. 2007, Palczewski 2010, Fletcher et al. 2011, den Ho
Last changed: 2014-11-21 19:49:01

Pathway: Visual phototransduction (Homo sapiens)
Visual phototransduction is the process by which photon absorption by visual pigment molecules in photoreceptor cells is converted to an electrical cellular response. The events in this process are photochemical, biochemical and electrophysiological and are highly conserved across many species. This process occurs in two types of photoreceptors in the retina, rods and cones. Each type consists of two p
Last changed: 2014-11-21 19:49:01

1 2 3 4 5 6 7 8 9 10 Next >
Show all results