Reactome: A Curated Pathway Database
Results 1 to 10 of 21
Pathways (13) Reactions (6) Proteins (1) Others (1)
Protein: UniProt:P11168 SLC2A2 (Homo sapiens)
Last changed: 2015-03-10 08:59:22

Pathway: Transmembrane transport of small molecules (Homo sapiens)
Last changed: 2015-03-06 23:15:47

Pathway: Metabolism (Homo sapiens)
Metabolic processes in human cells generate energy through the oxidation of molecules consumed in the diet and mediate the synthesis of diverse essential molecules not taken in the diet as well as the inactivation and elimination of toxic ones generated endogenously or present in the extracellular environment. The processes of energy metabolism can be classified into two groups according to whether the
Last changed: 2015-03-06 23:15:47

Pathway: Developmental Biology (Homo sapiens)
As a first step towards capturing the array of processes by which a fertilized egg gives rise to the diverse tissues of the body, examples of three kinds of processes have been annotated. These are aspects of the roles of cell adhesion molecules in axonal guidance and myogenesis, of transcriptional regulation in hematopoiesis (specifically, B lymphopoiesis), pancreatic beta cell and whit
Last changed: 2015-03-06 23:15:47

Pathway: Hexose transport (Homo sapiens)
Hexoses, notably fructose, glucose, and galactose, generated in the lumen of the small intestine by breakdown of dietary carbohydrate are taken up by enterocytes lining the microvilli of the small intestine and released from them into the blood. Uptake into enterocytes is mediated by two transporters localized on the lumenal surfaces of the cells, SGLT1 (glucose and galactose, together with sodium ions
Last changed: 2015-03-06 23:15:47

Pathway: Integration of energy metabolism (Homo sapiens)
Many hormones that affect individual physiological processes including the regulation of appetite, absorption, transport, and oxidation of foodstuffs influence energy metabolism pathways. While insulin mediates the storage of excess nutrients, glucagon is involved in the mobilization of energy resources in response to low blood glucose levels, principally by stimulating hepatic glucose ou
Last changed: 2015-03-06 23:15:47

Pathway: SLC-mediated transmembrane transport (Homo sapiens)
Proteins with transporting functions can be roughly classified into 3 categories: ATP-powered pumps, ion channels, and transporters. Pumps utilize the energy released by ATP hydrolysis to power the movement of the substrates across the membrane, against their electrochemical gradient. Channels at the open state can transfer the substrates (ions or water) down their electrochemical gradient, at an extre
Last changed: 2015-03-06 23:15:47

Pathway: Metabolism of carbohydrates (Homo sapiens)
These pathways together are responsible for: 1) the extraction of energy and carbon skeletons for biosyntheses from dietary sugars and related molecules; 2) the short-term storage of glucose in the body (as glycogen) and its mobilization during a short fast; and 3) the synthesis of glucose from pyruvate during extended fasts
Last changed: 2015-03-06 23:15:47

Pathway: Regulation of beta-cell development (Homo sapiens)
The normal development of the pancreas during gestation has been intensively investigated over the past decade especially in the mouse (Servitja and Ferrer 2004; Chakrabarti and Mirmira 2003). Studies of genetic defects associated with maturity onset diabetes of the young (MODY) has provided direct insight into these processes as they take place in humans (Fajans et al. 2001). During embryogenesis, com
Last changed: 2015-03-06 23:15:47

Pathway: Transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds (Homo sapiens)
Hexoses like glucose, galactose and fructose serve as basic fuel molecules for eukaryotic cells. Indeed, glucose is the main energy source for mammalian cells. These sugars are unable to diffuse across cellular membranes, and require transporter proteins for entry into and exit out of cells. Four gene families encode hexose transporter proteins (He et al, 2009). SLC2 family contains 14 genes and encode
Last changed: 2015-03-06 23:15:47

1 2 3 Next >
Show all results