Reactome: A Curated Pathway Database
All 10 results
Pathways (8) Reactions (1) Proteins (1) Others (0)
Protein: UniProt:P19367 HK1 (Homo sapiens)
Last changed: 2015-03-12 12:55:37

Pathway: Metabolism (Homo sapiens)
Metabolic processes in human cells generate energy through the oxidation of molecules consumed in the diet and mediate the synthesis of diverse essential molecules not taken in the diet as well as the inactivation and elimination of toxic ones generated endogenously or present in the extracellular environment. The processes of energy metabolism can be classified into two groups according to whether the
Last changed: 2015-03-06 23:15:47

Pathway: Transmembrane transport of small molecules (Homo sapiens)
Last changed: 2015-03-06 23:15:47

Pathway: SLC-mediated transmembrane transport (Homo sapiens)
Proteins with transporting functions can be roughly classified into 3 categories: ATP-powered pumps, ion channels, and transporters. Pumps utilize the energy released by ATP hydrolysis to power the movement of the substrates across the membrane, against their electrochemical gradient. Channels at the open state can transfer the substrates (ions or water) down their electrochemical gradient, at an extre
Last changed: 2015-03-06 23:15:47

Pathway: Hexose transport (Homo sapiens)
Hexoses, notably fructose, glucose, and galactose, generated in the lumen of the small intestine by breakdown of dietary carbohydrate are taken up by enterocytes lining the microvilli of the small intestine and released from them into the blood. Uptake into enterocytes is mediated by two transporters localized on the lumenal surfaces of the cells, SGLT1 (glucose and galactose, together with sodium ions
Last changed: 2015-03-06 23:15:47

Pathway: Metabolism of carbohydrates (Homo sapiens)
These pathways together are responsible for: 1) the extraction of energy and carbon skeletons for biosyntheses from dietary sugars and related molecules; 2) the short-term storage of glucose in the body (as glycogen) and its mobilization during a short fast; and 3) the synthesis of glucose from pyruvate during extended fasts
Last changed: 2015-03-06 23:15:47

Pathway: Glucose metabolism (Homo sapiens)
Glucose is the major form in which dietary sugars are made available to cells of the human body. Its breakdown is a major source of energy for all cells, and is essential for the brain and red blood cells. Glucose utilization begins with its uptake by cells and conversion to glucose 6-phosphate, which cannot traverse the cell membrane. Fates open to cytosolic glucose 6-phosphate include glycolysis to y
Last changed: 2015-03-06 23:15:47

Pathway: Glucose transport (Homo sapiens)
Cells take up glucose by facilitated diffusion, via glucose transporters (GLUTs) associated with the plasma membrane, a reversible reaction (Joost and Thorens 2001). Four tissue-specific GLUT isoforms are known. Glucose in the cytosol is phosphorylated by tissue-specific kinases to yield glucose 6-phosphate, which cannot cross the plasma membrane because of its negative charge. In the liver, this react
Last changed: 2015-03-06 23:15:47

Pathway: Glycolysis (Homo sapiens)
The reactions of glycolysis (e.g., van Wijk and van Solinge 2005) convert glucose 6-phosphate to pyruvate. The entire process is cytosolic. Glucose 6-phosphate is reversibly isomerized to form fructose 6-phosphate. Phosphofructokinase 1 catalyzes the physiologically irreversible phosphorylation of fructose 6-phosphate to form fructose 1,6-bisphosphate. In six reversible reactions, fructose 1,6-bisphosp
Last changed: 2015-03-06 23:15:47

Reaction: HK1,2,3,GCK phosphorylate Glc to form G6P (Homo sapiens)
Cytosolic glucokinase and the three isoforms of hexokinase catalyze the irreversible reaction of glucose and ATP to form glucose 6 phosphate and ADP. In the body glucokinase is found only in hepatocytes and pancreatic beta cells. Glucokinase and the hexokinase enzymes differ in that glucokinase has a higher Km than the hexokinases and is less readily inhibited by the reaction product. As a result, gluc
Last changed: 2015-03-12 13:50:51