Reactome: A Curated Pathway Database
Results 1 to 10 of 16
Pathways (9) Reactions (5) Proteins (1) Others (1)
Protein: UniProt:P29590 PML (Homo sapiens)
Last changed: 2015-03-12 12:55:37

Pathway: Metabolism of proteins (Homo sapiens)
Protein metabolism comprises the pathways of translation, post-translational modification and protein folding
Last changed: 2015-03-06 23:15:47

Pathway: Immune System (Homo sapiens)
Humans are exposed to millions of potential pathogens daily, through contact, ingestion, and inhalation. Our ability to avoid infection depends on the adaptive immune system and during the first critical hours and days of exposure to a new pathogen, our innate immune system
Last changed: 2015-03-06 23:15:47

Pathway: Cytokine Signaling in Immune system (Homo sapiens)
Cytokines are small proteins that regulate and mediate immunity, inflammation, and hematopoiesis. They are secreted in response to immune stimuli, and usually act briefly, locally, at very low concentrations. Cytokines bind to specific membrane receptors, which then signal the cell via second messengers, to regulate cellular activity
Last changed: 2015-03-06 23:15:47

Pathway: Interferon gamma signaling (Homo sapiens)
Interferon-gamma (IFN-gamma) belongs to the type II interferon family and is secreted by activated immune cells-primarily T and NK cells, but also B-cells and APC. INFG exerts its effect on cells by interacting with the specific IFN-gamma receptor (IFNGR). IFNGR consists of two chains, namely IFNGR1 (also known as the IFNGR alpha chain) and IFNGR2 (also known as the IFNGR beta chain). IFNGR1 is the lig
Last changed: 2015-03-06 10:40:16

Pathway: SUMO E3 ligases SUMOylate target proteins (Homo sapiens)
SUMO proteins are conjugated to lysine residues of target proteins via an isopeptide bond with the C-terminal glycine of SUMO (reviewed in Zhao 2007, Gareau and Lima 2010, Hannoun et al. 2010, Citro and Chiocca 2013, Yang and Chiang 2013). Proteomic analyses indicate that SUMO is conjugated to hundreds of proteins and most targets of SUMOylation are nuclear (Vertegal et al. 2006, Bruderer et al. 2011,
Last changed: 2015-03-06 23:15:47

Pathway: Post-translational protein modification (Homo sapiens)
After translation, many newly formed proteins undergo further covalent modifications that alter their functional properties and that are essentially irreversible under physiological conditions in the body. These modifications include the internal peptide bond cleavages that activate proenzymes, the attachment of oligosaccharide moieties to membrane-bound and secreted proteins, the attachment of lipid o
Last changed: 2015-03-06 23:15:47

Pathway: Interferon Signaling (Homo sapiens)
Interferons (IFNs) are cytokines that play a central role in initiating immune responses, especially antiviral and antitumor effects. There are three types of IFNs:Type I (IFN-alpha, -beta and others, such as omega, epsilon, and kappa), Type II (IFN-gamma) and Type III (IFN-lamda). In this module we are mainly focusing on type I IFNs alpha and beta and type II IFN-gamma. Both type I and type II IFNs ex
Last changed: 2015-03-06 23:15:47

Pathway: SUMOylation of DNA damage response and repair proteins (Homo sapiens)
Several factors that participate in DNA damage response and repair are SUMOylated (reviewed in Dou et al. 2011, Bekker-Jensen and Mailand 2011, Ulrich 2012, Psakhye and Jentsch 2012, Bologna and Ferrari 2013, Flotho and Melchior 2013, Jackson and Durocher 2013). SUMOylation can alter enzymatic activity and protein stability or it can serve to recruit additional factors. For example, SUMOylation of Thym
Last changed: 2015-03-06 23:15:47

Pathway: SUMOylation (Homo sapiens)
Small Ubiquitin-like MOdifiers (SUMOs) are a family of 3 proteins (SUMO1,2,3) that are reversibly conjugated to lysine residues of target proteins via a glycine-lysine isopeptide bond (reviewed in Hay 2013, Hannoun et al. 2010, Gareau and Lima 2010, Wilkinson and Henley 2010, Wang and Dasso 2009). Proteomic methods have yielded estimates of hundreds of target proteins. Targets are mostly located in the
Last changed: 2015-03-06 23:15:47

1 2 Next >
Show all results