Reactome: A Curated Pathway Database
Results 1 to 10 of 67
Pathways (26) Reactions (20) Proteins (2) Others (19)
Protein: UniProt:P37840 SNCA (Homo sapiens)
Last changed: 2014-11-26 10:20:21

Pathway: Gene Expression (Homo sapiens)
Gene Expression covers the pathways by which genomic DNA is transcribed to yield RNA, the regulation of these transcription processes, and the pathways by which newly-made RNA Transcripts are processed. Most annotation is centered on the generation of messenger RNAs (mRNAs) by regulated RNA polymerase II (PolII) transcription, although the activities of PolI and PolIII are also covered briefly, as are
Last changed: 2014-11-21 19:49:01

Pathway: Disease (Homo sapiens)
Biological processes are captured in Reactome by identifying the molecules (DNA, RNA, protein, small molecules) involved in them and describing the details of their interactions. From this molecular viewpoint, human disease pathways have three mechanistic causes: the inclusion of microbially-expressed proteins, altered functions of human proteins, or changed expression levels of otherwise functionally
Last changed: 2014-11-21 19:49:01

Pathway: Membrane Trafficking (Homo sapiens)
The secretory membrane system allows a cell to regulate delivery of newly synthesized proteins, carbohydrates, and lipids to the cell surface, a necessity for growth and homeostasis. The system is made up of distinct organelles, including the endoplasmic reticulum (ER), Golgi complex, plasma membrane, and tubulovesicular transport intermediates. These organelles mediate intracellular membrane transport
Last changed: 2014-11-21 19:49:01

Pathway: Neuronal System (Homo sapiens)
The human brain contains at least 100 billion neurons, each with the ability to influence many other cells. Clearly, highly sophisticated and efficient mechanisms are needed to enable communication among this astronomical number of elements. This communication occurs across synapses, the functional connection between neurons. Synapses can be divided into two general classes: electrical synapses and che
Last changed: 2014-11-21 19:49:01

Pathway: Cellular responses to stress (Homo sapiens)
Cells are subject to external molecular and physical stresses such as foreign molecules that perturb metabolic or signaling processes, and changes in temperature or pH. The ability of cells and tissues to modulate molecular processes in response to such external stresses is essential to the maintenance of tissue homeostasis (Kultz 2005)
Last changed: 2014-11-21 19:49:01

Pathway: Developmental Biology (Homo sapiens)
As a first step towards capturing the array of processes by which a fertilized egg gives rise to the diverse tissues of the body, examples of three kinds of processes have been annotated. These are aspects of the roles of cell adhesion molecules in axonal guidance and myogenesis, of transcriptional regulation in hematopoiesis (specifically, B lymphopoiesis), pancreatic beta cell and whit
Last changed: 2014-11-21 19:49:01

Pathway: Axon guidance (Homo sapiens)
Axon guidance / axon pathfinding is the process by which neurons send out axons to reach the correct targets. Growing axons have a highly motile structure at the growing tip called the growth cone, which senses the guidance cues in the environment through guidance cue receptors and responds by undergoing cytoskeletal changes that determine the direction of axon growth. Guidance cues present in the
Last changed: 2014-11-21 19:49:01

Pathway: Amyloids (Homo sapiens)
Amyloid is a term used to describe typically extracellular deposits of aggregated proteins, sometimes known as plaques. Abnormal accumulation of amyloid is amyloidosis, a term associated with diseased organs and tissues, particularly neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntingdon's. Amyloid deposits consist predominantly of amyloid fibrils, rigid, non-branching structures th
Last changed: 2014-11-21 19:49:01

Pathway: Transmission across Chemical Synapses (Homo sapiens)
Chemical synapses are specialized junctions that are used for communication between neurons, neurons and muscle or gland cells. The synapse involves a pre-synaptic neuron and a post-synaptic neuron, muscle cell or glad cell. The pre and the post-synaptic cell are separated by a gap of 20nm called the synaptic cleft. The signals pass in a unidirection from pre-synaptic to post-synaptic. The pre-synapti
Last changed: 2014-11-21 19:49:01

1 2 3 4 5 6 7 Next >
Show all results