Reactome: A Curated Pathway Database
The EBI data centre will be shutting down from the afternoon (BST) of Friday 26th August until the afternoon of Tuesday 30th August 2016 for essential maintenance. This might have an impact on some Reactome services and we apologize for any inconvenience.

Peptide chain elongation

Stable Identifier
Homo sapiens
Locations in the PathwayBrowser

The mechanism of a peptide bond requires the movement of three protons. First the deprotonation of the ammonium ion generates a reactive amine, allowing a nucleophilic attack on the carbonyl group. This is followed by the loss of a proton from the reaction intermediate, only to be taken up by the oxygen on the leaving group (from the end of the amino acid chain bound to the tRNA in the P-site). The peptide bond formation results in the net loss of one water molecule, leaving a deacylated-tRNA in the P-site, and a nascent polypeptide chain one amino acid larger in the A-site.
For the purpose of illustration, the figures used in the section show one amino acid being added to a peptidyl-tRNA with a growing peptide chain.

Literature References
PubMed ID Title Journal Year
Participant Of
Orthologous Events
Cross References
BioModels Database