Reactome: A Curated Pathway Database

Metabolism of nitric oxide (R-HSA-202131)

Species Homo sapiens

Summation

Nitric oxide (NO), a multifunctional second messenger, is implicated in physiological functions in mammals that range from immune response and potentiation of synaptic transmission to dilation of blood vessels and muscle relaxation. NO is a highly active molecule that diffuses across cell membranes and cannot be stored inside the producing cell. Its signaling capacity must be controlled at the levels of biosynthesis and local availability. Indeed, NO production by NO synthases is under complex and tight control, being regulated at transcriptional and translational levels, through co- and posttranslational modifications, and by subcellular localization. NO is synthesized from L-arginine by a family of nitric oxide synthases (NOS). Three NOS isoforms have been characterized: neuronal NOS (nNOS, NOS1) primarily found in neuronal tissue and skeletal muscle; inducible NOS (iNOS, NOS2) originally isolated from macrophages and later discovered in many other cells types; and endothelial NOS (eNOS, NOS3) present in vascular endothelial cells, cardiac myocytes, and in blood platelets. The enzymatic activity of all three isoforms is dependent on calmodulin, which binds to nNOS and eNOS at elevated intracellular calcium levels, while it is tightly associated with iNOS even at basal calcium levels. As a result, the enzymatic activity of nNOS and eNOS is modulated by changes in intracellular calcium levels, leading to transient NO production, while iNOS continuously releases NO independent of fluctuations in intracellular calcium levels and is mainly regulated at the gene expression level (Pacher et al. 2007).

The NOS enzymes share a common basic structural organization and requirement for substrate cofactors for enzymatic activity. A central calmodulin-binding motif separates an oxygenase (NH2-terminal) domain from a reductase (COOH-terminal) domain. Binding sites for cofactors NADPH, FAD, and FMN are located within the reductase domain, while binding sites for tetrahydrobiopterin (BH4) and heme are located within the oxygenase domain. Once calmodulin binds, it facilitates electron transfer from the cofactors in the reductase domain to heme enabling nitric oxide production. Both nNOS and eNOS contain an additional insert (40-50 amino acids) in the middle of the FMN-binding subdomain that serves as autoinhibitory loop, destabilizing calmodulin binding at low calcium levels and inhibiting electron transfer from FMN to the heme in the absence of calmodulin. iNOS does not contain this insert.

Because NOS enzymatic activity is modulated by the presence of its substrates and cofactors within the cell, under certain conditions, NOS may generate superoxide instead of NO, a process referred to as uncoupling (uncoupling of NADPH oxidation and NO synthesis).

The molecular details of eNOS function are annotated here.

Locations in the PathwayBrowser
Additional Information
Compartment cytosol
GO Biological Process nitric oxide metabolic process (0046209)
Literature References
pubMedId Title Journal Year
17237348 Nitric oxide and peroxynitrite in health and disease Physiol Rev 2007