Reactome: A Curated Pathway Database
Our hosting provider is doing scheduled maintenance from 8 AM (EST) on April 29 until 8 PM (EST) on April 30. Some Reactome services might be affected. If so, please use our Reactome China mirror at //reactome.ncpsb.org/

HDMs demethylate histones

Stable Identifier
R-HSA-3214842
Type
Pathway
Species
Homo sapiens
Locations in the PathwayBrowser
Summation

Histone lysine demethylases (KDMs) are able to reverse N-methylations of histones and probably other proteins. To date KDMs have been demonstrated to catalyse demethylation of N-epsilon methylated lysine residues. Biochemically there are two distinct groups of N-epsilon methylated lysine demethylases with different catalytic mechanisms, both of which result in methyl group oxidation to produce formaldhyde. KDM1A, formerly known as Lysine Specific Demethylase 1 (LSD1), belongs to the flavin adenine dinucleotide (FAD)-dependent amino oxidase family. The KDM1A reaction mechanism requires a protonatable lysine epsilon-amine group, not available in trimethylated lysines, which consequently are not KDM1 substrates. Other KDMs belong to the Jumonji C (JmjC) -domain containing family. These are members of the Cupin superfamily of mononuclear Fe (II)-dependent oxygenases, which are characterised by the presence of a double-stranded beta-helix core fold. They require 2-oxoglutarate (2OG) and molecular oxygen as co-substrates, producing, in addition to formaldehyde, succinate and carbon dioxide. This hydroxylation-based mechanism does not require a protonatable lysine epsilon-amine group and consequently JmjC-containing demethylases are able to demethylate tri-, di- and monomethylated lysines.
The coordinates of post-translational modifications represented and described here follow UniProt standard practice whereby coordinates refer to the translated protein before any further processing. Histone literature typically refers to coordinates of the protein after the initiating methionine has been removed. Therefore the coordinates of post-translated residues in the Reactome database and described here are frequently +1 when compared with the literature.
In general, methylation at histone H3 lysine-5 (H3K4) and lysine-37 (H3K36), including di- and trimethylation at these sites, has been linked to actively transcribed genes (reviewed in Martin & Zhang 2005). In contrast, lysine-10 (H3K9) promoter methylation is considered a repressive mark for euchromatic genes and is also one of the landmark modifications associated with heterochromatin (Peters et al. 2002).
The first reported JmjC-containing demethylases were KDM2A/B (JHDM1A/B, FBXL11/10). These catalyse demethylation of histone H3 lysine-37 when mono- or di-methylated (H3K36Me1/2) (Tsukada et al. 2006). They were found to contain a JmjC catalytic domain, previously implicated in chromatin-dependent functions (Clissold & Ponting 2001). Subsequently, many other JmjC enzymes have been identified and discovered to have lysine demethylase activities with distinct methylation site and state specificities.
KDM3A/B (JHDM2A/B) are specific for mono or di-methylated lysine-10 on histone H3 (H3K9Me1/2) (Yamane et al. 2006, Kim et al. 2012). KDM4A-C (JMJD2A-C/JHDM3A-C) catalyse demethylation of di- or tri-methylated histone H3 at lysine-10 (H3K9Me2/3) (Cloos et al. 2006, Fodor et al. 2006), with a strong preference for Me3 (Whetstine et al. 2007). KDM4D (JMJD2D) also catalyses demethylation of H3K9Me2/3 (Whetstine et al. 2007). KDM4A-C (JHDM3A-C) can also catalyse demethylation of lysine-37 of histone H3 (H3K36Me2/3) (Klose et al. 2006). KDM5A-D (JARID1A-D) catalyses demethylation of di- or tri-methylated lysine-5 of histone H3 (H3K4Me2/3) (Christensen et al. 2007, Klose et al. 2007, Lee et al. 2007, Secombe et al. 2007, Seward et al. 2007, Iwase et al. 2007). KDM6A and KDM6B (UTX/JMJD3) catalyse demethylation of di- or tri-methylated lysine-28 of histone H3 (H3K27Me2/3) (Agger et al. 2007, Cho et al. 2007, De Santra et al. 2007, Lan et al. 2007, Lee et al. 2007).

KDM7A (KIAA1718/JHDM1D) catalyses demethylation of mono- or di-methylated lysine-10 of histone H3 (H3K9Me1/2) and mono- and di-methylated lysine-28 of histone H3 (H3K27Me1/2) (Horton et al. 2010, Huang et al. 2010). PHF8 (JHDM1E) catalyses demethylation of mono- or di-methylated lysine-10 of histone H3 (H3K9Me1/2) and mono-methylated lysine-21 of histone H4 (H4K20Me1) (Loenarz et al. 2010, Horton et al. 2010, Feng et al. 2010, Kleine-Kohlbrecher et al. 2010, Fortschegger et al. 2010, Qi et al. 2010, Liu et al. 2010). PHF2 (JHDM1E) catalyses demethylation of mono- or di-methylated lysine-10 of histone H3 (H3K9Me1/2) (Wen et al, 2010, Baba et al. 2011). JMJD6 was initially characterized as an arginine demethylase that catalyses demethylation of mono or di methylated arginine 3 of histone H3 (H3R2Me1/2) and arginine 4 of histone H4 (H4R3Me1/2) (Chang et al. 2007) although it was subsequently also characterized as a lysine hydroxylase (Webby et al. 2009). N.B. The coordinates of post-translational modifications represented and described here follow UniProt standard practice whereby coordinates refer to the translated protein before any further processing. Histone literature typically refers to coordinates of the protein after the initiating methionine has been removed. Therefore the coordinates of post-translated residues in the Reactome database and described here are frequently +1 when compared with the literature.

Literature References
PubMed ID Title Journal Year
16261189 The diverse functions of histone lysine methylation Nat. Rev. Mol. Cell Biol. 2005
Participants
Participant Of
Orthologous Events