Reactome: A Curated Pathway Database

Cell-extracellular matrix interactions (R-HSA-446353)

Species Homo sapiens


Cell-extracellular matrix (ECM) interactions play a critical role in regulating a variety of cellular processes in multicellular organisms including motility, shape change, survival, proliferation and differentiation. Cell-ECM contact is mediated by transmembrane cell adhesion receptors, such as integrins, that interact with extracellular matrix proteins as well as a number of cytoplasmic adaptor proteins. Many of these adaptor proteins physically interact with the actin cytoskeleton or function in signal transduction.
Several protein complexes interact with the cytoplasmic tail of integrins and function in transducing bi-directional signals between the ECM and intracellular signaling pathways (reviewed in Sepulveda et al., 2005).
Early events that are triggered by interactions with ECM, such as formation/turnover of Focal Adhesions, regulation of actin dynamics and protrusion of lamellipodia to promote cellular spreading and motility are modulated by PINCH- ILK- parvin complexes (see Sepulveda et al., 2005). A number of partners of the PINCH-ILK-parvin complex components have been identified that regulate and/or mediate the functions of these complexes (reviewed in Wu, 2004). Interactions with some of these partners modulate cytoskeletal remodeling and cell spreading.

Locations in the PathwayBrowser
Literature References
pubMedId Title Journal Year
15246679 The PINCH-ILK-parvin complexes: assembly, functions and regulation Biochim Biophys Acta 2004