Reactome: A Curated Pathway Database

MAPK targets/ Nuclear events mediated by MAP kinases (R-HSA-450282)

Species Homo sapiens

Summation

MAPKs are protein kinases that, once activated, phosphorylate their specific cytosolic or nuclear substrates at serine and/or threonine residues. Such phosphorylation events can either positively or negatively regulate substrate, and thus entire signaling cascade activity.

The major cytosolic target of activated ERKs are RSKs (90 kDa Ribosomal protein S6 Kinase). Active RSKs translocates to the nucleus and phosphorylates such factors as c-Fos(on Ser362), SRF (Serum Response Factor) at Ser103, and CREB (Cyclic AMP Response Element-Binding protein) at Ser133. In the nucleus activated ERKs phosphorylate many other targets such as MSKs (Mitogen- and Stress-activated protein kinases), MNK (MAP interacting kinase) and Elk1 (on Serine383 and Serine389). ERK can directly phosphorylate CREB and also AP-1 components c-Jun and c-Fos. Another important target of ERK is NF-KappaB. Recent studies reveals that nuclear pore proteins are direct substrates for ERK (Kosako H et al, 2009). Other ERK nuclear targets include c-Myc, HSF1 (Heat-Shock Factor-1), STAT1/3 (Signal Transducer and Activator of Transcription-1/3), and many more transcription factors.

Activated p38 MAPK is able to phosphorylate a variety of substrates, including transcription factors STAT1, p53, ATF2 (Activating transcription factor 2), MEF2 (Myocyte enhancer factor-2), protein kinases MSK1, MNK, MAPKAPK2/3, death/survival molecules (Bcl2, caspases), and cell cycle control factors (cyclin D1).

JNK, once activated, phosphorylates a range of nuclear substrates, including transcription factors Jun, ATF, Elk1, p53, STAT1/3 and many other factors. JNK has also been shown to directly phosphorylate many nuclear hormone receptors. For example, peroxisome proliferator-activated receptor 1 (PPAR-1) and retinoic acid receptors RXR and RAR are substrates for JNK. Other JNK targets are heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Other adaptor and scaffold proteins have also been characterized as nonnuclear substrates of JNK.

Locations in the PathwayBrowser
Immune System(Homo sapiens)