Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Funding
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Curator Guide
Release Documentation
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
Ac-CoA [cytosol]
Stable Identifier
R-ALL-76183
Type
Chemical Compound [SimpleEntity]
Compartment
cytosol
Synonyms
Acetyl coenzyme A, acetyl-CoA, acetyl-CoA(4-)
Icon
Locations in the PathwayBrowser
for Species:
Homo sapiens
Bos taurus
Caenorhabditis elegans
Canis familiaris
Danio rerio
Dictyostelium discoideum
Drosophila melanogaster
Gallus gallus
Mus musculus
Mycobacterium tuberculosis
Plasmodium falciparum
Rattus norvegicus
Saccharomyces cerevisiae
Schizosaccharomyces pombe
Sus scrofa
Xenopus tropicalis
Expand all
Cell Cycle (Bos taurus)
Cell Cycle, Mitotic (Bos taurus)
M Phase (Bos taurus)
Mitotic Metaphase and Anaphase (Bos taurus)
Mitotic Anaphase (Bos taurus)
Separation of Sister Chromatids (Bos taurus)
Deacetylation of cleaved cohesin (Bos taurus)
Ac-CoA [cytosol]
Mitotic Prometaphase (Bos taurus)
Resolution of Sister Chromatid Cohesion (Bos taurus)
Deacetylation of cohesin (Bos taurus)
Ac-CoA [cytosol]
Drug ADME (Bos taurus)
Paracetamol ADME (Bos taurus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Bos taurus)
Ac-CoA [cytosol]
Metabolism (Bos taurus)
Aerobic respiration and respiratory electron transport (Bos taurus)
Pyruvate metabolism (Bos taurus)
PKM dephosphorylates PEP to PYR (Bos taurus)
Ac-CoA [cytosol]
Biological oxidations (Bos taurus)
Phase I - Functionalization of compounds (Bos taurus)
Ethanol oxidation (Bos taurus)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Bos taurus)
Ac-CoA [cytosol]
Phase II - Conjugation of compounds (Bos taurus)
Acetylation (Bos taurus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Bos taurus)
Ac-CoA [cytosol]
The acetyl group from acetyl-CoA is transferred to the NAT2 (Bos taurus)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Bos taurus)
Metabolism of amine-derived hormones (Bos taurus)
Serotonin and melatonin biosynthesis (Bos taurus)
N-acetylation of serotonin (Bos taurus)
Ac-CoA [cytosol]
Metabolism of polyamines (Bos taurus)
Interconversion of polyamines (Bos taurus)
Spermidine => N-acetylated spermidine (Bos taurus)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Bos taurus)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Bos taurus)
Glucose metabolism (Bos taurus)
Glycolysis (Bos taurus)
PKM dephosphorylates PEP to PYR (Bos taurus)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Bos taurus)
Heparan sulfate/heparin (HS-GAG) metabolism (Bos taurus)
HS-GAG degradation (Bos taurus)
HGSNAT oligomer acetylates Heparan chain(1) (Bos taurus)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Bos taurus)
Ac-CoA [cytosol]
Metabolism of lipids (Bos taurus)
Fatty acid metabolism (Bos taurus)
Carnitine shuttle (Bos taurus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Bos taurus)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Bos taurus)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Bos taurus)
ACLY tetramer transforms CIT to Ac-CoA (Bos taurus)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Bos taurus)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Bos taurus)
Ac-CoA [cytosol]
Ketone body metabolism (Bos taurus)
Synthesis of Ketone Bodies (Bos taurus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Bos taurus)
Ac-CoA [cytosol]
Metabolism of steroids (Bos taurus)
Cholesterol biosynthesis (Bos taurus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Bos taurus)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Bos taurus)
Ac-CoA [cytosol]
Phospholipid metabolism (Bos taurus)
Glycerophospholipid biosynthesis (Bos taurus)
Synthesis of PC (Bos taurus)
Cho is acetylated to AcCho by CHAT (Bos taurus)
Ac-CoA [cytosol]
Metabolism of proteins (Bos taurus)
Post-translational protein modification (Bos taurus)
Asparagine N-linked glycosylation (Bos taurus)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Bos taurus)
Synthesis of substrates in N-glycan biosythesis (Bos taurus)
Synthesis of UDP-N-acetyl-glucosamine (Bos taurus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Bos taurus)
Ac-CoA [cytosol]
Neuronal System (Bos taurus)
Transmission across Chemical Synapses (Bos taurus)
Neurotransmitter release cycle (Bos taurus)
Acetylcholine Neurotransmitter Release Cycle (Bos taurus)
Cho is acetylated to AcCho by CHAT (Bos taurus)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Bos taurus)
Cilium Assembly (Bos taurus)
ATAT acetylates microtubules (Bos taurus)
Ac-CoA [cytosol]
HDAC6 deacetylates microtubules (Bos taurus)
Ac-CoA [cytosol]
Transport of small molecules (Bos taurus)
SLC-mediated transmembrane transport (Bos taurus)
Transport of vitamins, nucleosides, and related molecules (Bos taurus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Bos taurus)
Ac-CoA [cytosol]
Metabolism (Caenorhabditis elegans)
Aerobic respiration and respiratory electron transport (Caenorhabditis elegans)
Pyruvate metabolism (Caenorhabditis elegans)
PKM dephosphorylates PEP to PYR (Caenorhabditis elegans)
Ac-CoA [cytosol]
Biological oxidations (Caenorhabditis elegans)
Phase I - Functionalization of compounds (Caenorhabditis elegans)
Ethanol oxidation (Caenorhabditis elegans)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Caenorhabditis elegans)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Caenorhabditis elegans)
Metabolism of polyamines (Caenorhabditis elegans)
Interconversion of polyamines (Caenorhabditis elegans)
Spermidine => N-acetylated spermidine (Caenorhabditis elegans)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Caenorhabditis elegans)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Caenorhabditis elegans)
Glucose metabolism (Caenorhabditis elegans)
Glycolysis (Caenorhabditis elegans)
PKM dephosphorylates PEP to PYR (Caenorhabditis elegans)
Ac-CoA [cytosol]
Metabolism of lipids (Caenorhabditis elegans)
Fatty acid metabolism (Caenorhabditis elegans)
Carnitine shuttle (Caenorhabditis elegans)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Caenorhabditis elegans)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Caenorhabditis elegans)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Caenorhabditis elegans)
ACLY tetramer transforms CIT to Ac-CoA (Caenorhabditis elegans)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Caenorhabditis elegans)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Caenorhabditis elegans)
Ac-CoA [cytosol]
Ketone body metabolism (Caenorhabditis elegans)
Synthesis of Ketone Bodies (Caenorhabditis elegans)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Caenorhabditis elegans)
Ac-CoA [cytosol]
Metabolism of steroids (Caenorhabditis elegans)
Cholesterol biosynthesis (Caenorhabditis elegans)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Caenorhabditis elegans)
Ac-CoA [cytosol]
Phospholipid metabolism (Caenorhabditis elegans)
Glycerophospholipid biosynthesis (Caenorhabditis elegans)
Synthesis of PC (Caenorhabditis elegans)
Cho is acetylated to AcCho by CHAT (Caenorhabditis elegans)
Ac-CoA [cytosol]
Metabolism of proteins (Caenorhabditis elegans)
Post-translational protein modification (Caenorhabditis elegans)
Asparagine N-linked glycosylation (Caenorhabditis elegans)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Caenorhabditis elegans)
Synthesis of substrates in N-glycan biosythesis (Caenorhabditis elegans)
Synthesis of UDP-N-acetyl-glucosamine (Caenorhabditis elegans)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Caenorhabditis elegans)
Ac-CoA [cytosol]
Neuronal System (Caenorhabditis elegans)
Transmission across Chemical Synapses (Caenorhabditis elegans)
Neurotransmitter release cycle (Caenorhabditis elegans)
Acetylcholine Neurotransmitter Release Cycle (Caenorhabditis elegans)
Cho is acetylated to AcCho by CHAT (Caenorhabditis elegans)
Ac-CoA [cytosol]
Transport of small molecules (Caenorhabditis elegans)
SLC-mediated transmembrane transport (Caenorhabditis elegans)
Transport of vitamins, nucleosides, and related molecules (Caenorhabditis elegans)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Caenorhabditis elegans)
Ac-CoA [cytosol]
Cell Cycle (Canis familiaris)
Cell Cycle, Mitotic (Canis familiaris)
M Phase (Canis familiaris)
Mitotic Metaphase and Anaphase (Canis familiaris)
Mitotic Anaphase (Canis familiaris)
Separation of Sister Chromatids (Canis familiaris)
Deacetylation of cleaved cohesin (Canis familiaris)
Ac-CoA [cytosol]
Mitotic Prometaphase (Canis familiaris)
Resolution of Sister Chromatid Cohesion (Canis familiaris)
Deacetylation of cohesin (Canis familiaris)
Ac-CoA [cytosol]
Metabolism (Canis familiaris)
Aerobic respiration and respiratory electron transport (Canis familiaris)
Pyruvate metabolism (Canis familiaris)
PKM dephosphorylates PEP to PYR (Canis familiaris)
Ac-CoA [cytosol]
Biological oxidations (Canis familiaris)
Phase I - Functionalization of compounds (Canis familiaris)
Ethanol oxidation (Canis familiaris)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Canis familiaris)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Canis familiaris)
Metabolism of amine-derived hormones (Canis familiaris)
Serotonin and melatonin biosynthesis (Canis familiaris)
N-acetylation of serotonin (Canis familiaris)
Ac-CoA [cytosol]
Metabolism of polyamines (Canis familiaris)
Interconversion of polyamines (Canis familiaris)
Spermidine => N-acetylated spermidine (Canis familiaris)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Canis familiaris)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Canis familiaris)
Glucose metabolism (Canis familiaris)
Glycolysis (Canis familiaris)
PKM dephosphorylates PEP to PYR (Canis familiaris)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Canis familiaris)
Heparan sulfate/heparin (HS-GAG) metabolism (Canis familiaris)
HS-GAG degradation (Canis familiaris)
HGSNAT oligomer acetylates Heparan chain(1) (Canis familiaris)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Canis familiaris)
Ac-CoA [cytosol]
Metabolism of lipids (Canis familiaris)
Fatty acid metabolism (Canis familiaris)
Carnitine shuttle (Canis familiaris)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Canis familiaris)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Canis familiaris)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Canis familiaris)
ACLY tetramer transforms CIT to Ac-CoA (Canis familiaris)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Canis familiaris)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Canis familiaris)
Ac-CoA [cytosol]
Ketone body metabolism (Canis familiaris)
Synthesis of Ketone Bodies (Canis familiaris)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Canis familiaris)
Ac-CoA [cytosol]
Metabolism of steroids (Canis familiaris)
Cholesterol biosynthesis (Canis familiaris)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Canis familiaris)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Canis familiaris)
Ac-CoA [cytosol]
Phospholipid metabolism (Canis familiaris)
Glycerophospholipid biosynthesis (Canis familiaris)
Synthesis of PC (Canis familiaris)
Cho is acetylated to AcCho by CHAT (Canis familiaris)
Ac-CoA [cytosol]
Metabolism of proteins (Canis familiaris)
Post-translational protein modification (Canis familiaris)
Asparagine N-linked glycosylation (Canis familiaris)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Canis familiaris)
Synthesis of substrates in N-glycan biosythesis (Canis familiaris)
Synthesis of UDP-N-acetyl-glucosamine (Canis familiaris)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Canis familiaris)
Ac-CoA [cytosol]
Neuronal System (Canis familiaris)
Transmission across Chemical Synapses (Canis familiaris)
Neurotransmitter release cycle (Canis familiaris)
Acetylcholine Neurotransmitter Release Cycle (Canis familiaris)
Cho is acetylated to AcCho by CHAT (Canis familiaris)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Canis familiaris)
Cilium Assembly (Canis familiaris)
ATAT acetylates microtubules (Canis familiaris)
Ac-CoA [cytosol]
HDAC6 deacetylates microtubules (Canis familiaris)
Ac-CoA [cytosol]
Transport of small molecules (Canis familiaris)
SLC-mediated transmembrane transport (Canis familiaris)
Transport of vitamins, nucleosides, and related molecules (Canis familiaris)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Canis familiaris)
Ac-CoA [cytosol]
Cell Cycle (Danio rerio)
Cell Cycle, Mitotic (Danio rerio)
M Phase (Danio rerio)
Mitotic Prometaphase (Danio rerio)
Resolution of Sister Chromatid Cohesion (Danio rerio)
Deacetylation of cohesin (Danio rerio)
Ac-CoA [cytosol]
Drug ADME (Danio rerio)
Paracetamol ADME (Danio rerio)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Danio rerio)
Ac-CoA [cytosol]
Metabolism (Danio rerio)
Aerobic respiration and respiratory electron transport (Danio rerio)
Pyruvate metabolism (Danio rerio)
PKM dephosphorylates PEP to PYR (Danio rerio)
Ac-CoA [cytosol]
Biological oxidations (Danio rerio)
Phase II - Conjugation of compounds (Danio rerio)
Acetylation (Danio rerio)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Danio rerio)
Ac-CoA [cytosol]
The acetyl group from acetyl-CoA is transferred to the NAT2 (Danio rerio)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Danio rerio)
Metabolism of amine-derived hormones (Danio rerio)
Serotonin and melatonin biosynthesis (Danio rerio)
N-acetylation of serotonin (Danio rerio)
Ac-CoA [cytosol]
Metabolism of polyamines (Danio rerio)
Interconversion of polyamines (Danio rerio)
Spermidine => N-acetylated spermidine (Danio rerio)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Danio rerio)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Danio rerio)
Glucose metabolism (Danio rerio)
Glycolysis (Danio rerio)
PKM dephosphorylates PEP to PYR (Danio rerio)
Ac-CoA [cytosol]
Metabolism of lipids (Danio rerio)
Fatty acid metabolism (Danio rerio)
Fatty acyl-CoA biosynthesis (Danio rerio)
ACLY tetramer transforms CIT to Ac-CoA (Danio rerio)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Danio rerio)
Ac-CoA [cytosol]
Ketone body metabolism (Danio rerio)
Synthesis of Ketone Bodies (Danio rerio)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Danio rerio)
Ac-CoA [cytosol]
Metabolism of steroids (Danio rerio)
Cholesterol biosynthesis (Danio rerio)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Danio rerio)
Ac-CoA [cytosol]
Phospholipid metabolism (Danio rerio)
Glycerophospholipid biosynthesis (Danio rerio)
Synthesis of PC (Danio rerio)
Cho is acetylated to AcCho by CHAT (Danio rerio)
Ac-CoA [cytosol]
Metabolism of proteins (Danio rerio)
Post-translational protein modification (Danio rerio)
Asparagine N-linked glycosylation (Danio rerio)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Danio rerio)
Synthesis of substrates in N-glycan biosythesis (Danio rerio)
Synthesis of UDP-N-acetyl-glucosamine (Danio rerio)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Danio rerio)
Ac-CoA [cytosol]
Neuronal System (Danio rerio)
Transmission across Chemical Synapses (Danio rerio)
Neurotransmitter release cycle (Danio rerio)
Acetylcholine Neurotransmitter Release Cycle (Danio rerio)
Cho is acetylated to AcCho by CHAT (Danio rerio)
Ac-CoA [cytosol]
Transport of small molecules (Danio rerio)
SLC-mediated transmembrane transport (Danio rerio)
Transport of vitamins, nucleosides, and related molecules (Danio rerio)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Danio rerio)
Ac-CoA [cytosol]
Cell Cycle (Dictyostelium discoideum)
Cell Cycle, Mitotic (Dictyostelium discoideum)
M Phase (Dictyostelium discoideum)
Mitotic Prometaphase (Dictyostelium discoideum)
Resolution of Sister Chromatid Cohesion (Dictyostelium discoideum)
Deacetylation of cohesin (Dictyostelium discoideum)
Ac-CoA [cytosol]
Metabolism (Dictyostelium discoideum)
Aerobic respiration and respiratory electron transport (Dictyostelium discoideum)
Pyruvate metabolism (Dictyostelium discoideum)
PKM dephosphorylates PEP to PYR (Dictyostelium discoideum)
Ac-CoA [cytosol]
Biological oxidations (Dictyostelium discoideum)
Phase I - Functionalization of compounds (Dictyostelium discoideum)
Ethanol oxidation (Dictyostelium discoideum)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Dictyostelium discoideum)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Dictyostelium discoideum)
Metabolism of polyamines (Dictyostelium discoideum)
Interconversion of polyamines (Dictyostelium discoideum)
Spermidine => N-acetylated spermidine (Dictyostelium discoideum)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Dictyostelium discoideum)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Dictyostelium discoideum)
Glucose metabolism (Dictyostelium discoideum)
Glycolysis (Dictyostelium discoideum)
PKM dephosphorylates PEP to PYR (Dictyostelium discoideum)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Dictyostelium discoideum)
Heparan sulfate/heparin (HS-GAG) metabolism (Dictyostelium discoideum)
HS-GAG degradation (Dictyostelium discoideum)
HGSNAT oligomer acetylates Heparan chain(1) (Dictyostelium discoideum)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Dictyostelium discoideum)
Ac-CoA [cytosol]
Metabolism of lipids (Dictyostelium discoideum)
Fatty acid metabolism (Dictyostelium discoideum)
Carnitine shuttle (Dictyostelium discoideum)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Dictyostelium discoideum)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Dictyostelium discoideum)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Dictyostelium discoideum)
ACLY tetramer transforms CIT to Ac-CoA (Dictyostelium discoideum)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Dictyostelium discoideum)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Dictyostelium discoideum)
Ac-CoA [cytosol]
Ketone body metabolism (Dictyostelium discoideum)
Synthesis of Ketone Bodies (Dictyostelium discoideum)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Dictyostelium discoideum)
Ac-CoA [cytosol]
Metabolism of steroids (Dictyostelium discoideum)
Cholesterol biosynthesis (Dictyostelium discoideum)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Dictyostelium discoideum)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Dictyostelium discoideum)
Ac-CoA [cytosol]
Metabolism of proteins (Dictyostelium discoideum)
Post-translational protein modification (Dictyostelium discoideum)
Asparagine N-linked glycosylation (Dictyostelium discoideum)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Dictyostelium discoideum)
Synthesis of substrates in N-glycan biosythesis (Dictyostelium discoideum)
Synthesis of UDP-N-acetyl-glucosamine (Dictyostelium discoideum)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Dictyostelium discoideum)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Dictyostelium discoideum)
Cilium Assembly (Dictyostelium discoideum)
HDAC6 deacetylates microtubules (Dictyostelium discoideum)
Ac-CoA [cytosol]
Transport of small molecules (Dictyostelium discoideum)
SLC-mediated transmembrane transport (Dictyostelium discoideum)
Transport of vitamins, nucleosides, and related molecules (Dictyostelium discoideum)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Dictyostelium discoideum)
Ac-CoA [cytosol]
Metabolism (Drosophila melanogaster)
Aerobic respiration and respiratory electron transport (Drosophila melanogaster)
Pyruvate metabolism (Drosophila melanogaster)
PKM dephosphorylates PEP to PYR (Drosophila melanogaster)
Ac-CoA [cytosol]
Biological oxidations (Drosophila melanogaster)
Phase I - Functionalization of compounds (Drosophila melanogaster)
Ethanol oxidation (Drosophila melanogaster)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Drosophila melanogaster)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Drosophila melanogaster)
Metabolism of polyamines (Drosophila melanogaster)
Interconversion of polyamines (Drosophila melanogaster)
Spermidine => N-acetylated spermidine (Drosophila melanogaster)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Drosophila melanogaster)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Drosophila melanogaster)
Glucose metabolism (Drosophila melanogaster)
Glycolysis (Drosophila melanogaster)
PKM dephosphorylates PEP to PYR (Drosophila melanogaster)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Drosophila melanogaster)
Heparan sulfate/heparin (HS-GAG) metabolism (Drosophila melanogaster)
HS-GAG degradation (Drosophila melanogaster)
HGSNAT oligomer acetylates Heparan chain(1) (Drosophila melanogaster)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Drosophila melanogaster)
Ac-CoA [cytosol]
Metabolism of lipids (Drosophila melanogaster)
Fatty acid metabolism (Drosophila melanogaster)
Carnitine shuttle (Drosophila melanogaster)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Drosophila melanogaster)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Drosophila melanogaster)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Drosophila melanogaster)
ACLY tetramer transforms CIT to Ac-CoA (Drosophila melanogaster)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Drosophila melanogaster)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Drosophila melanogaster)
Ac-CoA [cytosol]
Ketone body metabolism (Drosophila melanogaster)
Synthesis of Ketone Bodies (Drosophila melanogaster)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Drosophila melanogaster)
Ac-CoA [cytosol]
Metabolism of steroids (Drosophila melanogaster)
Cholesterol biosynthesis (Drosophila melanogaster)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Drosophila melanogaster)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Drosophila melanogaster)
Ac-CoA [cytosol]
Phospholipid metabolism (Drosophila melanogaster)
Glycerophospholipid biosynthesis (Drosophila melanogaster)
Synthesis of PC (Drosophila melanogaster)
Cho is acetylated to AcCho by CHAT (Drosophila melanogaster)
Ac-CoA [cytosol]
Metabolism of proteins (Drosophila melanogaster)
Post-translational protein modification (Drosophila melanogaster)
Asparagine N-linked glycosylation (Drosophila melanogaster)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Drosophila melanogaster)
Synthesis of substrates in N-glycan biosythesis (Drosophila melanogaster)
Synthesis of UDP-N-acetyl-glucosamine (Drosophila melanogaster)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Drosophila melanogaster)
Ac-CoA [cytosol]
Neuronal System (Drosophila melanogaster)
Transmission across Chemical Synapses (Drosophila melanogaster)
Neurotransmitter release cycle (Drosophila melanogaster)
Acetylcholine Neurotransmitter Release Cycle (Drosophila melanogaster)
Cho is acetylated to AcCho by CHAT (Drosophila melanogaster)
Ac-CoA [cytosol]
Transport of small molecules (Drosophila melanogaster)
SLC-mediated transmembrane transport (Drosophila melanogaster)
Transport of vitamins, nucleosides, and related molecules (Drosophila melanogaster)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Drosophila melanogaster)
Ac-CoA [cytosol]
Cell Cycle (Gallus gallus)
Cell Cycle, Mitotic (Gallus gallus)
M Phase (Gallus gallus)
Mitotic Metaphase and Anaphase (Gallus gallus)
Mitotic Anaphase (Gallus gallus)
Separation of Sister Chromatids (Gallus gallus)
Deacetylation of cleaved cohesin (Gallus gallus)
Ac-CoA [cytosol]
Mitotic Prometaphase (Gallus gallus)
Resolution of Sister Chromatid Cohesion (Gallus gallus)
Deacetylation of cohesin (Gallus gallus)
Ac-CoA [cytosol]
Drug ADME (Gallus gallus)
Paracetamol ADME (Gallus gallus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Gallus gallus)
Ac-CoA [cytosol]
Metabolism (Gallus gallus)
Aerobic respiration and respiratory electron transport (Gallus gallus)
Pyruvate metabolism (Gallus gallus)
PKM dephosphorylates PEP to PYR (Gallus gallus)
Ac-CoA [cytosol]
Biological oxidations (Gallus gallus)
Phase I - Functionalization of compounds (Gallus gallus)
Ethanol oxidation (Gallus gallus)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Gallus gallus)
Ac-CoA [cytosol]
Phase II - Conjugation of compounds (Gallus gallus)
Acetylation (Gallus gallus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Gallus gallus)
Ac-CoA [cytosol]
The acetyl group from acetyl-CoA is transferred to the NAT2 (Gallus gallus)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Gallus gallus)
Metabolism of amine-derived hormones (Gallus gallus)
Serotonin and melatonin biosynthesis (Gallus gallus)
N-acetylation of serotonin (Gallus gallus)
Ac-CoA [cytosol]
Metabolism of polyamines (Gallus gallus)
Interconversion of polyamines (Gallus gallus)
Spermidine => N-acetylated spermidine (Gallus gallus)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Gallus gallus)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Gallus gallus)
Glucose metabolism (Gallus gallus)
Glycolysis (Gallus gallus)
PKM dephosphorylates PEP to PYR (Gallus gallus)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Gallus gallus)
Heparan sulfate/heparin (HS-GAG) metabolism (Gallus gallus)
HS-GAG degradation (Gallus gallus)
HGSNAT oligomer acetylates Heparan chain(1) (Gallus gallus)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Gallus gallus)
Ac-CoA [cytosol]
Metabolism of lipids (Gallus gallus)
Fatty acid metabolism (Gallus gallus)
Carnitine shuttle (Gallus gallus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Gallus gallus)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Gallus gallus)
ACLY tetramer transforms CIT to Ac-CoA (Gallus gallus)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Gallus gallus)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Gallus gallus)
Ac-CoA [cytosol]
Ketone body metabolism (Gallus gallus)
Synthesis of Ketone Bodies (Gallus gallus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Gallus gallus)
Ac-CoA [cytosol]
Metabolism of steroids (Gallus gallus)
Cholesterol biosynthesis (Gallus gallus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Gallus gallus)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Gallus gallus)
Ac-CoA [cytosol]
Phospholipid metabolism (Gallus gallus)
Glycerophospholipid biosynthesis (Gallus gallus)
Synthesis of PC (Gallus gallus)
Cho is acetylated to AcCho by CHAT (Gallus gallus)
Ac-CoA [cytosol]
Metabolism of proteins (Gallus gallus)
Post-translational protein modification (Gallus gallus)
Asparagine N-linked glycosylation (Gallus gallus)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Gallus gallus)
Synthesis of substrates in N-glycan biosythesis (Gallus gallus)
Synthesis of UDP-N-acetyl-glucosamine (Gallus gallus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Gallus gallus)
Ac-CoA [cytosol]
Neuronal System (Gallus gallus)
Transmission across Chemical Synapses (Gallus gallus)
Neurotransmitter release cycle (Gallus gallus)
Acetylcholine Neurotransmitter Release Cycle (Gallus gallus)
Cho is acetylated to AcCho by CHAT (Gallus gallus)
Ac-CoA [cytosol]
Transport of small molecules (Gallus gallus)
SLC-mediated transmembrane transport (Gallus gallus)
Transport of vitamins, nucleosides, and related molecules (Gallus gallus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Gallus gallus)
Ac-CoA [cytosol]
Cell Cycle (Homo sapiens)
Cell Cycle, Mitotic (Homo sapiens)
M Phase (Homo sapiens)
Mitotic Metaphase and Anaphase (Homo sapiens)
Mitotic Anaphase (Homo sapiens)
Separation of Sister Chromatids (Homo sapiens)
Deacetylation of cleaved cohesin (Homo sapiens)
Ac-CoA [cytosol]
Mitotic Prometaphase (Homo sapiens)
Resolution of Sister Chromatid Cohesion (Homo sapiens)
Deacetylation of cohesin (Homo sapiens)
Ac-CoA [cytosol]
Disease (Homo sapiens)
Diseases of metabolism (Homo sapiens)
Diseases of carbohydrate metabolism (Homo sapiens)
Mucopolysaccharidoses (Homo sapiens)
MPS IIIC - Sanfilippo syndrome C (Homo sapiens)
Defective HGSNAT does not acetylate Heparan chain(1) (Homo sapiens)
Ac-CoA [cytosol]
Defective HGSNAT does not acetylate Heparan sulfate chain(3) (Homo sapiens)
Ac-CoA [cytosol]
Disorders of transmembrane transporters (Homo sapiens)
SLC transporter disorders (Homo sapiens)
Defective SLC33A1 causes spastic paraplegia 42 (SPG42) (Homo sapiens)
Defective SLC33A1 does not transport Ac-CoA from cytosol to Golgi lumen (Homo sapiens)
Ac-CoA [cytosol]
Infectious disease (Homo sapiens)
Bacterial Infection Pathways (Homo sapiens)
Infection with Mycobacterium tuberculosis (Homo sapiens)
Response of Mtb to phagocytosis (Homo sapiens)
Suppression of autophagy (Homo sapiens)
Eis acetylates DUSP16 (Homo sapiens)
Ac-CoA [cytosol]
Viral Infection Pathways (Homo sapiens)
SARS-CoV Infections (Homo sapiens)
SARS-CoV-2 Infection (Homo sapiens)
SARS-CoV-2-host interactions (Homo sapiens)
SARS-CoV-2 activates/modulates innate and adaptive immune responses (Homo sapiens)
CREBBP acetylates SARS-CoV-2 N at K375 (Homo sapiens)
Ac-CoA [cytosol]
Drug ADME (Homo sapiens)
Paracetamol ADME (Homo sapiens)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Homo sapiens)
Ac-CoA [cytosol]
Metabolism (Homo sapiens)
Aerobic respiration and respiratory electron transport (Homo sapiens)
Pyruvate metabolism (Homo sapiens)
PKM dephosphorylates PEP to PYR (Homo sapiens)
Ac-CoA [cytosol]
Biological oxidations (Homo sapiens)
Aflatoxin activation and detoxification (Homo sapiens)
Unknown NAT transfers COCH3 to AFXBO-C, AFNBO-C (Homo sapiens)
Ac-CoA [cytosol]
Phase I - Functionalization of compounds (Homo sapiens)
Ethanol oxidation (Homo sapiens)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Homo sapiens)
Ac-CoA [cytosol]
Phase II - Conjugation of compounds (Homo sapiens)
Acetylation (Homo sapiens)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Homo sapiens)
Ac-CoA [cytosol]
The acetyl group from acetyl-CoA is transferred to the NAT2 (Homo sapiens)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Homo sapiens)
Metabolism of amine-derived hormones (Homo sapiens)
Serotonin and melatonin biosynthesis (Homo sapiens)
N-acetylation of serotonin (Homo sapiens)
Ac-CoA [cytosol]
Metabolism of polyamines (Homo sapiens)
Interconversion of polyamines (Homo sapiens)
Spermidine => N-acetylated spermidine (Homo sapiens)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Homo sapiens)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Homo sapiens)
Glucose metabolism (Homo sapiens)
Glycolysis (Homo sapiens)
PKM dephosphorylates PEP to PYR (Homo sapiens)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Homo sapiens)
Heparan sulfate/heparin (HS-GAG) metabolism (Homo sapiens)
HS-GAG degradation (Homo sapiens)
HGSNAT oligomer acetylates Heparan chain(1) (Homo sapiens)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Homo sapiens)
Ac-CoA [cytosol]
Metabolism of lipids (Homo sapiens)
Fatty acid metabolism (Homo sapiens)
Carnitine shuttle (Homo sapiens)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Homo sapiens)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Homo sapiens)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Homo sapiens)
ACLY tetramer transforms CIT to Ac-CoA (Homo sapiens)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Homo sapiens)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Homo sapiens)
Ac-CoA [cytosol]
Ketone body metabolism (Homo sapiens)
Synthesis of Ketone Bodies (Homo sapiens)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Homo sapiens)
Ac-CoA [cytosol]
Metabolism of steroids (Homo sapiens)
Cholesterol biosynthesis (Homo sapiens)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Homo sapiens)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Homo sapiens)
Ac-CoA [cytosol]
Phospholipid metabolism (Homo sapiens)
Glycerophospholipid biosynthesis (Homo sapiens)
Synthesis of PC (Homo sapiens)
Cho is acetylated to AcCho by CHAT (Homo sapiens)
Ac-CoA [cytosol]
Metabolism of proteins (Homo sapiens)
Post-translational protein modification (Homo sapiens)
Asparagine N-linked glycosylation (Homo sapiens)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Homo sapiens)
Synthesis of substrates in N-glycan biosythesis (Homo sapiens)
Synthesis of UDP-N-acetyl-glucosamine (Homo sapiens)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Homo sapiens)
Ac-CoA [cytosol]
Neuronal System (Homo sapiens)
Transmission across Chemical Synapses (Homo sapiens)
Neurotransmitter release cycle (Homo sapiens)
Acetylcholine Neurotransmitter Release Cycle (Homo sapiens)
Cho is acetylated to AcCho by CHAT (Homo sapiens)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Homo sapiens)
Cilium Assembly (Homo sapiens)
ATAT acetylates microtubules (Homo sapiens)
Ac-CoA [cytosol]
HDAC6 deacetylates microtubules (Homo sapiens)
Ac-CoA [cytosol]
Transport of small molecules (Homo sapiens)
SLC-mediated transmembrane transport (Homo sapiens)
Transport of vitamins, nucleosides, and related molecules (Homo sapiens)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Homo sapiens)
Ac-CoA [cytosol]
Vesicle-mediated transport (Homo sapiens)
Membrane Trafficking (Homo sapiens)
Intra-Golgi and retrograde Golgi-to-ER traffic (Homo sapiens)
Retrograde transport at the Trans-Golgi-Network (Homo sapiens)
NatC acetylates ARFFRP1 (Homo sapiens)
Ac-CoA [cytosol]
Cell Cycle (Mus musculus)
Cell Cycle, Mitotic (Mus musculus)
M Phase (Mus musculus)
Mitotic Metaphase and Anaphase (Mus musculus)
Mitotic Anaphase (Mus musculus)
Separation of Sister Chromatids (Mus musculus)
Deacetylation of cleaved cohesin (Mus musculus)
Ac-CoA [cytosol]
Mitotic Prometaphase (Mus musculus)
Resolution of Sister Chromatid Cohesion (Mus musculus)
Deacetylation of cohesin (Mus musculus)
Ac-CoA [cytosol]
Drug ADME (Mus musculus)
Paracetamol ADME (Mus musculus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Mus musculus)
Ac-CoA [cytosol]
Metabolism (Mus musculus)
Aerobic respiration and respiratory electron transport (Mus musculus)
Pyruvate metabolism (Mus musculus)
PKM dephosphorylates PEP to PYR (Mus musculus)
Ac-CoA [cytosol]
Biological oxidations (Mus musculus)
Phase I - Functionalization of compounds (Mus musculus)
Ethanol oxidation (Mus musculus)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Mus musculus)
Ac-CoA [cytosol]
Phase II - Conjugation of compounds (Mus musculus)
Acetylation (Mus musculus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Mus musculus)
Ac-CoA [cytosol]
The acetyl group from acetyl-CoA is transferred to the NAT2 (Mus musculus)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Mus musculus)
Metabolism of amine-derived hormones (Mus musculus)
Serotonin and melatonin biosynthesis (Mus musculus)
N-acetylation of serotonin (Mus musculus)
Ac-CoA [cytosol]
Metabolism of polyamines (Mus musculus)
Interconversion of polyamines (Mus musculus)
Spermidine => N-acetylated spermidine (Mus musculus)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Mus musculus)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Mus musculus)
Glucose metabolism (Mus musculus)
Glycolysis (Mus musculus)
PKM dephosphorylates PEP to PYR (Mus musculus)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Mus musculus)
Heparan sulfate/heparin (HS-GAG) metabolism (Mus musculus)
HS-GAG degradation (Mus musculus)
HGSNAT oligomer acetylates Heparan chain(1) (Mus musculus)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Mus musculus)
Ac-CoA [cytosol]
Metabolism of lipids (Mus musculus)
Fatty acid metabolism (Mus musculus)
Carnitine shuttle (Mus musculus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Mus musculus)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Mus musculus)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Mus musculus)
ACLY tetramer transforms CIT to Ac-CoA (Mus musculus)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Mus musculus)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Mus musculus)
Ac-CoA [cytosol]
Ketone body metabolism (Mus musculus)
Synthesis of Ketone Bodies (Mus musculus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Mus musculus)
Ac-CoA [cytosol]
Metabolism of steroids (Mus musculus)
Cholesterol biosynthesis (Mus musculus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Mus musculus)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Mus musculus)
Ac-CoA [cytosol]
Phospholipid metabolism (Mus musculus)
Glycerophospholipid biosynthesis (Mus musculus)
Synthesis of PC (Mus musculus)
Cho is acetylated to AcCho by CHAT (Mus musculus)
Ac-CoA [cytosol]
Metabolism of proteins (Mus musculus)
Post-translational protein modification (Mus musculus)
Asparagine N-linked glycosylation (Mus musculus)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Mus musculus)
Synthesis of substrates in N-glycan biosythesis (Mus musculus)
Synthesis of UDP-N-acetyl-glucosamine (Mus musculus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Mus musculus)
Ac-CoA [cytosol]
Neuronal System (Mus musculus)
Transmission across Chemical Synapses (Mus musculus)
Neurotransmitter release cycle (Mus musculus)
Acetylcholine Neurotransmitter Release Cycle (Mus musculus)
Cho is acetylated to AcCho by CHAT (Mus musculus)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Mus musculus)
Cilium Assembly (Mus musculus)
ATAT acetylates microtubules (Mus musculus)
Ac-CoA [cytosol]
HDAC6 deacetylates microtubules (Mus musculus)
Ac-CoA [cytosol]
Transport of small molecules (Mus musculus)
SLC-mediated transmembrane transport (Mus musculus)
Transport of vitamins, nucleosides, and related molecules (Mus musculus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Mus musculus)
Ac-CoA [cytosol]
Mycobacterium tuberculosis biological processes (Mycobacterium tuberculosis)
Mycothiol metabolism (Mycobacterium tuberculosis)
Mycothiol biosynthesis (Mycobacterium tuberculosis)
desacetylmycothiol is acetylated to mycothiol using acetyl-CoA (Mycobacterium tuberculosis)
Ac-CoA [cytosol]
Sulfur compound metabolism (Mycobacterium tuberculosis)
Sulfur amino acid metabolism (Mycobacterium tuberculosis)
Cysteine synthesis from O-acetylserine (Mycobacterium tuberculosis)
acetylation of serine (Mycobacterium tuberculosis)
Ac-CoA [cytosol]
Metabolism (Plasmodium falciparum)
Aerobic respiration and respiratory electron transport (Plasmodium falciparum)
Pyruvate metabolism (Plasmodium falciparum)
PKM dephosphorylates PEP to PYR (Plasmodium falciparum)
Ac-CoA [cytosol]
Biological oxidations (Plasmodium falciparum)
Phase I - Functionalization of compounds (Plasmodium falciparum)
Ethanol oxidation (Plasmodium falciparum)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Plasmodium falciparum)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Plasmodium falciparum)
Glucose metabolism (Plasmodium falciparum)
Glycolysis (Plasmodium falciparum)
PKM dephosphorylates PEP to PYR (Plasmodium falciparum)
Ac-CoA [cytosol]
Metabolism of lipids (Plasmodium falciparum)
Fatty acid metabolism (Plasmodium falciparum)
Carnitine shuttle (Plasmodium falciparum)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Plasmodium falciparum)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Plasmodium falciparum)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Plasmodium falciparum)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Plasmodium falciparum)
Ac-CoA [cytosol]
Metabolism of steroids (Plasmodium falciparum)
Cholesterol biosynthesis (Plasmodium falciparum)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Plasmodium falciparum)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Plasmodium falciparum)
Cilium Assembly (Plasmodium falciparum)
ATAT acetylates microtubules (Plasmodium falciparum)
Ac-CoA [cytosol]
HDAC6 deacetylates microtubules (Plasmodium falciparum)
Ac-CoA [cytosol]
Transport of small molecules (Plasmodium falciparum)
SLC-mediated transmembrane transport (Plasmodium falciparum)
Transport of vitamins, nucleosides, and related molecules (Plasmodium falciparum)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Plasmodium falciparum)
Ac-CoA [cytosol]
Cell Cycle (Rattus norvegicus)
Cell Cycle, Mitotic (Rattus norvegicus)
M Phase (Rattus norvegicus)
Mitotic Metaphase and Anaphase (Rattus norvegicus)
Mitotic Anaphase (Rattus norvegicus)
Separation of Sister Chromatids (Rattus norvegicus)
Deacetylation of cleaved cohesin (Rattus norvegicus)
Ac-CoA [cytosol]
Mitotic Prometaphase (Rattus norvegicus)
Resolution of Sister Chromatid Cohesion (Rattus norvegicus)
Deacetylation of cohesin (Rattus norvegicus)
Ac-CoA [cytosol]
Drug ADME (Rattus norvegicus)
Paracetamol ADME (Rattus norvegicus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Rattus norvegicus)
Ac-CoA [cytosol]
Metabolism (Rattus norvegicus)
Aerobic respiration and respiratory electron transport (Rattus norvegicus)
Pyruvate metabolism (Rattus norvegicus)
PKM dephosphorylates PEP to PYR (Rattus norvegicus)
Ac-CoA [cytosol]
Biological oxidations (Rattus norvegicus)
Phase I - Functionalization of compounds (Rattus norvegicus)
Ethanol oxidation (Rattus norvegicus)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Rattus norvegicus)
Ac-CoA [cytosol]
Phase II - Conjugation of compounds (Rattus norvegicus)
Acetylation (Rattus norvegicus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Rattus norvegicus)
Ac-CoA [cytosol]
The acetyl group from acetyl-CoA is transferred to the NAT2 (Rattus norvegicus)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Rattus norvegicus)
Metabolism of amine-derived hormones (Rattus norvegicus)
Serotonin and melatonin biosynthesis (Rattus norvegicus)
N-acetylation of serotonin (Rattus norvegicus)
Ac-CoA [cytosol]
Metabolism of polyamines (Rattus norvegicus)
Interconversion of polyamines (Rattus norvegicus)
Spermidine => N-acetylated spermidine (Rattus norvegicus)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Rattus norvegicus)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Rattus norvegicus)
Glucose metabolism (Rattus norvegicus)
Glycolysis (Rattus norvegicus)
PKM dephosphorylates PEP to PYR (Rattus norvegicus)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Rattus norvegicus)
Heparan sulfate/heparin (HS-GAG) metabolism (Rattus norvegicus)
HS-GAG degradation (Rattus norvegicus)
HGSNAT oligomer acetylates Heparan chain(1) (Rattus norvegicus)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Rattus norvegicus)
Ac-CoA [cytosol]
Metabolism of lipids (Rattus norvegicus)
Fatty acid metabolism (Rattus norvegicus)
Carnitine shuttle (Rattus norvegicus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Rattus norvegicus)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Rattus norvegicus)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Rattus norvegicus)
ACLY tetramer transforms CIT to Ac-CoA (Rattus norvegicus)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Rattus norvegicus)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Rattus norvegicus)
Ac-CoA [cytosol]
Ketone body metabolism (Rattus norvegicus)
Synthesis of Ketone Bodies (Rattus norvegicus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Rattus norvegicus)
Ac-CoA [cytosol]
Metabolism of steroids (Rattus norvegicus)
Cholesterol biosynthesis (Rattus norvegicus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Rattus norvegicus)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Rattus norvegicus)
Ac-CoA [cytosol]
Phospholipid metabolism (Rattus norvegicus)
Glycerophospholipid biosynthesis (Rattus norvegicus)
Synthesis of PC (Rattus norvegicus)
Cho is acetylated to AcCho by CHAT (Rattus norvegicus)
Ac-CoA [cytosol]
Metabolism of proteins (Rattus norvegicus)
Post-translational protein modification (Rattus norvegicus)
Asparagine N-linked glycosylation (Rattus norvegicus)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Rattus norvegicus)
Synthesis of substrates in N-glycan biosythesis (Rattus norvegicus)
Synthesis of UDP-N-acetyl-glucosamine (Rattus norvegicus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Rattus norvegicus)
Ac-CoA [cytosol]
Neuronal System (Rattus norvegicus)
Transmission across Chemical Synapses (Rattus norvegicus)
Neurotransmitter release cycle (Rattus norvegicus)
Acetylcholine Neurotransmitter Release Cycle (Rattus norvegicus)
Cho is acetylated to AcCho by CHAT (Rattus norvegicus)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Rattus norvegicus)
Cilium Assembly (Rattus norvegicus)
ATAT acetylates microtubules (Rattus norvegicus)
Ac-CoA [cytosol]
Transport of small molecules (Rattus norvegicus)
SLC-mediated transmembrane transport (Rattus norvegicus)
Transport of vitamins, nucleosides, and related molecules (Rattus norvegicus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Rattus norvegicus)
Ac-CoA [cytosol]
Cell Cycle (Saccharomyces cerevisiae)
Cell Cycle, Mitotic (Saccharomyces cerevisiae)
M Phase (Saccharomyces cerevisiae)
Mitotic Prometaphase (Saccharomyces cerevisiae)
Resolution of Sister Chromatid Cohesion (Saccharomyces cerevisiae)
Deacetylation of cohesin (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism (Saccharomyces cerevisiae)
Aerobic respiration and respiratory electron transport (Saccharomyces cerevisiae)
Pyruvate metabolism (Saccharomyces cerevisiae)
PKM dephosphorylates PEP to PYR (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Biological oxidations (Saccharomyces cerevisiae)
Phase I - Functionalization of compounds (Saccharomyces cerevisiae)
Ethanol oxidation (Saccharomyces cerevisiae)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Saccharomyces cerevisiae)
Metabolism of amine-derived hormones (Saccharomyces cerevisiae)
Serotonin and melatonin biosynthesis (Saccharomyces cerevisiae)
N-acetylation of serotonin (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism of polyamines (Saccharomyces cerevisiae)
Interconversion of polyamines (Saccharomyces cerevisiae)
Spermidine => N-acetylated spermidine (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Saccharomyces cerevisiae)
Glucose metabolism (Saccharomyces cerevisiae)
Glycolysis (Saccharomyces cerevisiae)
PKM dephosphorylates PEP to PYR (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism of lipids (Saccharomyces cerevisiae)
Fatty acid metabolism (Saccharomyces cerevisiae)
Carnitine shuttle (Saccharomyces cerevisiae)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Saccharomyces cerevisiae)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism of steroids (Saccharomyces cerevisiae)
Cholesterol biosynthesis (Saccharomyces cerevisiae)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism of proteins (Saccharomyces cerevisiae)
Post-translational protein modification (Saccharomyces cerevisiae)
Asparagine N-linked glycosylation (Saccharomyces cerevisiae)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Saccharomyces cerevisiae)
Synthesis of substrates in N-glycan biosythesis (Saccharomyces cerevisiae)
Synthesis of UDP-N-acetyl-glucosamine (Saccharomyces cerevisiae)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Transport of small molecules (Saccharomyces cerevisiae)
SLC-mediated transmembrane transport (Saccharomyces cerevisiae)
Transport of vitamins, nucleosides, and related molecules (Saccharomyces cerevisiae)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Saccharomyces cerevisiae)
Ac-CoA [cytosol]
Metabolism (Schizosaccharomyces pombe)
Aerobic respiration and respiratory electron transport (Schizosaccharomyces pombe)
Pyruvate metabolism (Schizosaccharomyces pombe)
PKM dephosphorylates PEP to PYR (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Biological oxidations (Schizosaccharomyces pombe)
Phase I - Functionalization of compounds (Schizosaccharomyces pombe)
Ethanol oxidation (Schizosaccharomyces pombe)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Schizosaccharomyces pombe)
Metabolism of amine-derived hormones (Schizosaccharomyces pombe)
Serotonin and melatonin biosynthesis (Schizosaccharomyces pombe)
N-acetylation of serotonin (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Metabolism of polyamines (Schizosaccharomyces pombe)
Interconversion of polyamines (Schizosaccharomyces pombe)
Spermidine => N-acetylated spermidine (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Schizosaccharomyces pombe)
Glucose metabolism (Schizosaccharomyces pombe)
Glycolysis (Schizosaccharomyces pombe)
PKM dephosphorylates PEP to PYR (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Metabolism of lipids (Schizosaccharomyces pombe)
Fatty acid metabolism (Schizosaccharomyces pombe)
Carnitine shuttle (Schizosaccharomyces pombe)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Schizosaccharomyces pombe)
ACLY tetramer transforms CIT to Ac-CoA (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Metabolism of steroids (Schizosaccharomyces pombe)
Cholesterol biosynthesis (Schizosaccharomyces pombe)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Metabolism of proteins (Schizosaccharomyces pombe)
Post-translational protein modification (Schizosaccharomyces pombe)
Asparagine N-linked glycosylation (Schizosaccharomyces pombe)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Schizosaccharomyces pombe)
Synthesis of substrates in N-glycan biosythesis (Schizosaccharomyces pombe)
Synthesis of UDP-N-acetyl-glucosamine (Schizosaccharomyces pombe)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Transport of small molecules (Schizosaccharomyces pombe)
SLC-mediated transmembrane transport (Schizosaccharomyces pombe)
Transport of vitamins, nucleosides, and related molecules (Schizosaccharomyces pombe)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Schizosaccharomyces pombe)
Ac-CoA [cytosol]
Cell Cycle (Sus scrofa)
Cell Cycle, Mitotic (Sus scrofa)
M Phase (Sus scrofa)
Mitotic Metaphase and Anaphase (Sus scrofa)
Mitotic Anaphase (Sus scrofa)
Separation of Sister Chromatids (Sus scrofa)
Deacetylation of cleaved cohesin (Sus scrofa)
Ac-CoA [cytosol]
Mitotic Prometaphase (Sus scrofa)
Resolution of Sister Chromatid Cohesion (Sus scrofa)
Deacetylation of cohesin (Sus scrofa)
Ac-CoA [cytosol]
Drug ADME (Sus scrofa)
Paracetamol ADME (Sus scrofa)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Sus scrofa)
Ac-CoA [cytosol]
Metabolism (Sus scrofa)
Aerobic respiration and respiratory electron transport (Sus scrofa)
Pyruvate metabolism (Sus scrofa)
PKM dephosphorylates PEP to PYR (Sus scrofa)
Ac-CoA [cytosol]
Biological oxidations (Sus scrofa)
Phase I - Functionalization of compounds (Sus scrofa)
Ethanol oxidation (Sus scrofa)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Sus scrofa)
Ac-CoA [cytosol]
Phase II - Conjugation of compounds (Sus scrofa)
Acetylation (Sus scrofa)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Sus scrofa)
Ac-CoA [cytosol]
The acetyl group from acetyl-CoA is transferred to the NAT2 (Sus scrofa)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Sus scrofa)
Metabolism of amine-derived hormones (Sus scrofa)
Serotonin and melatonin biosynthesis (Sus scrofa)
N-acetylation of serotonin (Sus scrofa)
Ac-CoA [cytosol]
Metabolism of polyamines (Sus scrofa)
Interconversion of polyamines (Sus scrofa)
Spermidine => N-acetylated spermidine (Sus scrofa)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Sus scrofa)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Sus scrofa)
Glucose metabolism (Sus scrofa)
Glycolysis (Sus scrofa)
PKM dephosphorylates PEP to PYR (Sus scrofa)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Sus scrofa)
Heparan sulfate/heparin (HS-GAG) metabolism (Sus scrofa)
HS-GAG degradation (Sus scrofa)
HGSNAT oligomer acetylates Heparan chain(1) (Sus scrofa)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Sus scrofa)
Ac-CoA [cytosol]
Metabolism of lipids (Sus scrofa)
Fatty acid metabolism (Sus scrofa)
Carnitine shuttle (Sus scrofa)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Sus scrofa)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Sus scrofa)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Sus scrofa)
ACLY tetramer transforms CIT to Ac-CoA (Sus scrofa)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Sus scrofa)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Sus scrofa)
Ac-CoA [cytosol]
Ketone body metabolism (Sus scrofa)
Synthesis of Ketone Bodies (Sus scrofa)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Sus scrofa)
Ac-CoA [cytosol]
Metabolism of steroids (Sus scrofa)
Cholesterol biosynthesis (Sus scrofa)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Sus scrofa)
Ac-CoA [cytosol]
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Sus scrofa)
Ac-CoA [cytosol]
Phospholipid metabolism (Sus scrofa)
Glycerophospholipid biosynthesis (Sus scrofa)
Synthesis of PC (Sus scrofa)
Cho is acetylated to AcCho by CHAT (Sus scrofa)
Ac-CoA [cytosol]
Metabolism of proteins (Sus scrofa)
Post-translational protein modification (Sus scrofa)
Asparagine N-linked glycosylation (Sus scrofa)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Sus scrofa)
Synthesis of substrates in N-glycan biosythesis (Sus scrofa)
Synthesis of UDP-N-acetyl-glucosamine (Sus scrofa)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Sus scrofa)
Ac-CoA [cytosol]
Neuronal System (Sus scrofa)
Transmission across Chemical Synapses (Sus scrofa)
Neurotransmitter release cycle (Sus scrofa)
Acetylcholine Neurotransmitter Release Cycle (Sus scrofa)
Cho is acetylated to AcCho by CHAT (Sus scrofa)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Sus scrofa)
Cilium Assembly (Sus scrofa)
ATAT acetylates microtubules (Sus scrofa)
Ac-CoA [cytosol]
HDAC6 deacetylates microtubules (Sus scrofa)
Ac-CoA [cytosol]
Transport of small molecules (Sus scrofa)
SLC-mediated transmembrane transport (Sus scrofa)
Transport of vitamins, nucleosides, and related molecules (Sus scrofa)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Sus scrofa)
Ac-CoA [cytosol]
Metabolism (Xenopus tropicalis)
Aerobic respiration and respiratory electron transport (Xenopus tropicalis)
Pyruvate metabolism (Xenopus tropicalis)
PKM dephosphorylates PEP to PYR (Xenopus tropicalis)
Ac-CoA [cytosol]
Biological oxidations (Xenopus tropicalis)
Phase I - Functionalization of compounds (Xenopus tropicalis)
Ethanol oxidation (Xenopus tropicalis)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Xenopus tropicalis)
Ac-CoA [cytosol]
Metabolism of amino acids and derivatives (Xenopus tropicalis)
Metabolism of polyamines (Xenopus tropicalis)
Interconversion of polyamines (Xenopus tropicalis)
Spermidine => N-acetylated spermidine (Xenopus tropicalis)
Ac-CoA [cytosol]
Spermine => N-acetylated spermine (Xenopus tropicalis)
Ac-CoA [cytosol]
Metabolism of carbohydrates (Xenopus tropicalis)
Glucose metabolism (Xenopus tropicalis)
Glycolysis (Xenopus tropicalis)
PKM dephosphorylates PEP to PYR (Xenopus tropicalis)
Ac-CoA [cytosol]
Glycosaminoglycan metabolism (Xenopus tropicalis)
Heparan sulfate/heparin (HS-GAG) metabolism (Xenopus tropicalis)
HS-GAG degradation (Xenopus tropicalis)
HGSNAT oligomer acetylates Heparan chain(1) (Xenopus tropicalis)
Ac-CoA [cytosol]
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Xenopus tropicalis)
Ac-CoA [cytosol]
Metabolism of lipids (Xenopus tropicalis)
Fatty acid metabolism (Xenopus tropicalis)
Carnitine shuttle (Xenopus tropicalis)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Xenopus tropicalis)
Ac-CoA [cytosol]
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Xenopus tropicalis)
Ac-CoA [cytosol]
Fatty acyl-CoA biosynthesis (Xenopus tropicalis)
ACLY tetramer transforms CIT to Ac-CoA (Xenopus tropicalis)
Ac-CoA [cytosol]
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Xenopus tropicalis)
Ac-CoA [cytosol]
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Xenopus tropicalis)
Ac-CoA [cytosol]
Ketone body metabolism (Xenopus tropicalis)
Synthesis of Ketone Bodies (Xenopus tropicalis)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Xenopus tropicalis)
Ac-CoA [cytosol]
Metabolism of steroids (Xenopus tropicalis)
Cholesterol biosynthesis (Xenopus tropicalis)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Xenopus tropicalis)
Ac-CoA [cytosol]
Metabolism of proteins (Xenopus tropicalis)
Post-translational protein modification (Xenopus tropicalis)
Asparagine N-linked glycosylation (Xenopus tropicalis)
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein (Xenopus tropicalis)
Synthesis of substrates in N-glycan biosythesis (Xenopus tropicalis)
Synthesis of UDP-N-acetyl-glucosamine (Xenopus tropicalis)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Xenopus tropicalis)
Ac-CoA [cytosol]
Organelle biogenesis and maintenance (Xenopus tropicalis)
Cilium Assembly (Xenopus tropicalis)
ATAT acetylates microtubules (Xenopus tropicalis)
Ac-CoA [cytosol]
Transport of small molecules (Xenopus tropicalis)
SLC-mediated transmembrane transport (Xenopus tropicalis)
Transport of vitamins, nucleosides, and related molecules (Xenopus tropicalis)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Xenopus tropicalis)
Ac-CoA [cytosol]
External Reference Information
External Reference
acetyl-CoA(4-) [ChEBI:57288]
Participates
as an input of
NatC acetylates ARL3 (Saccharomyces cerevisiae)
NatC acetylates ARFFRP1 (Homo sapiens)
ATAT acetylates microtubules (Plasmodium falciparum)
ATAT acetylates microtubules (Xenopus tropicalis)
ATAT acetylates microtubules (Sus scrofa)
ATAT acetylates microtubules (Bos taurus)
ATAT acetylates microtubules (Canis familiaris)
ATAT acetylates microtubules (Rattus norvegicus)
ATAT acetylates microtubules (Mus musculus)
ATAT acetylates microtubules (Homo sapiens)
desacetylmycothiol is acetylated to mycothiol using acetyl-CoA (Mycobacterium tuberculosis)
acetylation of serine (Mycobacterium tuberculosis)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Plasmodium falciparum)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Saccharomyces cerevisiae)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Schizosaccharomyces pombe)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Dictyostelium discoideum)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Caenorhabditis elegans)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Drosophila melanogaster)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Xenopus tropicalis)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Sus scrofa)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Bos taurus)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Canis familiaris)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Rattus norvegicus)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Mus musculus)
Btn-ACACB:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Homo sapiens)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Plasmodium falciparum)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Saccharomyces cerevisiae)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Schizosaccharomyces pombe)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Dictyostelium discoideum)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Caenorhabditis elegans)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Drosophila melanogaster)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Gallus gallus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Xenopus tropicalis)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Sus scrofa)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Bos taurus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Canis familiaris)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Rattus norvegicus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Mus musculus)
Btn-ACACA:2Mn2+ polymer carboxylates Ac-CoA to form Mal-CoA (Homo sapiens)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Gallus gallus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Danio rerio)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Sus scrofa)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Bos taurus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Rattus norvegicus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Mus musculus)
NAT1,2 acetylate APAP-Cys to APAP-Mer (Homo sapiens)
Defective SLC33A1 does not transport Ac-CoA from cytosol to Golgi lumen (Homo sapiens)
Defective HGSNAT does not acetylate Heparan chain(1) (Homo sapiens)
Defective HGSNAT does not acetylate Heparan sulfate chain(3) (Homo sapiens)
Unknown NAT transfers COCH3 to AFXBO-C, AFNBO-C (Homo sapiens)
Eis acetylates DUSP16 (Homo sapiens)
The acetyl group from acetyl-CoA is transferred to the NAT2 (Gallus gallus)
The acetyl group from acetyl-CoA is transferred to the NAT2 (Danio rerio)
The acetyl group from acetyl-CoA is transferred to the NAT2 (Sus scrofa)
The acetyl group from acetyl-CoA is transferred to the NAT2 (Bos taurus)
The acetyl group from acetyl-CoA is transferred to the NAT2 (Rattus norvegicus)
The acetyl group from acetyl-CoA is transferred to the NAT2 (Mus musculus)
The acetyl group from acetyl-CoA is transferred to the NAT2 (Homo sapiens)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Gallus gallus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Danio rerio)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Sus scrofa)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Bos taurus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Rattus norvegicus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Mus musculus)
The acetyl group from acetyl-CoA is transferred to the NAT1 (Homo sapiens)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Plasmodium falciparum)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Saccharomyces cerevisiae)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Schizosaccharomyces pombe)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Dictyostelium discoideum)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Caenorhabditis elegans)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Drosophila melanogaster)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Gallus gallus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Xenopus tropicalis)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Danio rerio)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Sus scrofa)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Bos taurus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Canis familiaris)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Rattus norvegicus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Mus musculus)
SLC33A1 transports Ac-CoA from cytosol to Golgi lumen (Homo sapiens)
Cho is acetylated to AcCho by CHAT (Caenorhabditis elegans)
Cho is acetylated to AcCho by CHAT (Drosophila melanogaster)
Cho is acetylated to AcCho by CHAT (Gallus gallus)
Cho is acetylated to AcCho by CHAT (Danio rerio)
Cho is acetylated to AcCho by CHAT (Sus scrofa)
Cho is acetylated to AcCho by CHAT (Bos taurus)
Cho is acetylated to AcCho by CHAT (Canis familiaris)
Cho is acetylated to AcCho by CHAT (Rattus norvegicus)
Cho is acetylated to AcCho by CHAT (Mus musculus)
Cho is acetylated to AcCho by CHAT (Homo sapiens)
Spermidine => N-acetylated spermidine (Saccharomyces cerevisiae)
Spermidine => N-acetylated spermidine (Schizosaccharomyces pombe)
Spermidine => N-acetylated spermidine (Dictyostelium discoideum)
Spermidine => N-acetylated spermidine (Caenorhabditis elegans)
Spermidine => N-acetylated spermidine (Drosophila melanogaster)
Spermidine => N-acetylated spermidine (Gallus gallus)
Spermidine => N-acetylated spermidine (Xenopus tropicalis)
Spermidine => N-acetylated spermidine (Danio rerio)
Spermidine => N-acetylated spermidine (Sus scrofa)
Spermidine => N-acetylated spermidine (Bos taurus)
Spermidine => N-acetylated spermidine (Canis familiaris)
Spermidine => N-acetylated spermidine (Rattus norvegicus)
Spermidine => N-acetylated spermidine (Mus musculus)
Spermidine => N-acetylated spermidine (Homo sapiens)
Spermine => N-acetylated spermine (Saccharomyces cerevisiae)
Spermine => N-acetylated spermine (Schizosaccharomyces pombe)
Spermine => N-acetylated spermine (Dictyostelium discoideum)
Spermine => N-acetylated spermine (Caenorhabditis elegans)
Spermine => N-acetylated spermine (Drosophila melanogaster)
Spermine => N-acetylated spermine (Gallus gallus)
Spermine => N-acetylated spermine (Xenopus tropicalis)
Spermine => N-acetylated spermine (Danio rerio)
Spermine => N-acetylated spermine (Sus scrofa)
Spermine => N-acetylated spermine (Bos taurus)
Spermine => N-acetylated spermine (Canis familiaris)
Spermine => N-acetylated spermine (Rattus norvegicus)
Spermine => N-acetylated spermine (Mus musculus)
Spermine => N-acetylated spermine (Homo sapiens)
HGSNAT oligomer acetylates Heparan chain(1) (Dictyostelium discoideum)
HGSNAT oligomer acetylates Heparan chain(1) (Drosophila melanogaster)
HGSNAT oligomer acetylates Heparan chain(1) (Xenopus tropicalis)
HGSNAT oligomer acetylates Heparan chain(1) (Sus scrofa)
HGSNAT oligomer acetylates Heparan chain(1) (Bos taurus)
HGSNAT oligomer acetylates Heparan chain(1) (Canis familiaris)
HGSNAT oligomer acetylates Heparan chain(1) (Rattus norvegicus)
HGSNAT oligomer acetylates Heparan chain(1) (Mus musculus)
HGSNAT oligomer acetylates Heparan chain(1) (Homo sapiens)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Dictyostelium discoideum)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Drosophila melanogaster)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Xenopus tropicalis)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Sus scrofa)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Bos taurus)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Canis familiaris)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Rattus norvegicus)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Mus musculus)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Homo sapiens)
HGSNAT oligomer acetylates Heparan sulfate chain(3) (Gallus gallus)
HGSNAT oligomer acetylates Heparan chain(1) (Gallus gallus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Saccharomyces cerevisiae)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Schizosaccharomyces pombe)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Dictyostelium discoideum)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Caenorhabditis elegans)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Drosophila melanogaster)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Gallus gallus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Xenopus tropicalis)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Danio rerio)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Sus scrofa)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Bos taurus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Canis familiaris)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Rattus norvegicus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Mus musculus)
Acetylation of glucosamine 6-phosphate to GlcNAc6P (Homo sapiens)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Saccharomyces cerevisiae)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Schizosaccharomyces pombe)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Dictyostelium discoideum)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Caenorhabditis elegans)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Drosophila melanogaster)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Gallus gallus)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Sus scrofa)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Bos taurus)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Canis familiaris)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Rattus norvegicus)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Mus musculus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Plasmodium falciparum)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Saccharomyces cerevisiae)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Schizosaccharomyces pombe)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Dictyostelium discoideum)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Drosophila melanogaster)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Gallus gallus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Xenopus tropicalis)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Danio rerio)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Sus scrofa)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Bos taurus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Canis familiaris)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Rattus norvegicus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Mus musculus)
ACAT2 condenses 2 Ac-CoA to form ACA-CoA (Homo sapiens)
HMGCS1 condenses Ac-CoA and ACA-CoA to form bHMG-CoA (Homo sapiens)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Dictyostelium discoideum)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Caenorhabditis elegans)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Drosophila melanogaster)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Gallus gallus)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Xenopus tropicalis)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Danio rerio)
CREBBP acetylates SARS-CoV-2 N at K375 (Homo sapiens)
N-acetylation of serotonin (Mus musculus)
N-acetylation of serotonin (Homo sapiens)
N-acetylation of serotonin (Rattus norvegicus)
N-acetylation of serotonin (Canis familiaris)
N-acetylation of serotonin (Bos taurus)
N-acetylation of serotonin (Sus scrofa)
N-acetylation of serotonin (Danio rerio)
N-acetylation of serotonin (Gallus gallus)
N-acetylation of serotonin (Schizosaccharomyces pombe)
N-acetylation of serotonin (Saccharomyces cerevisiae)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Homo sapiens)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Homo sapiens)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Mus musculus)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Rattus norvegicus)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Canis familiaris)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Bos taurus)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Sus scrofa)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Xenopus tropicalis)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Gallus gallus)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Drosophila melanogaster)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Caenorhabditis elegans)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Dictyostelium discoideum)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Schizosaccharomyces pombe)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Saccharomyces cerevisiae)
Formation of Malonyl-CoA from Acetyl-CoA (liver) (Plasmodium falciparum)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Mus musculus)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Rattus norvegicus)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Canis familiaris)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Bos taurus)
Conversion of malonyl-CoA and acetyl-CoA to palmitate (Sus scrofa)
as an output of
HDAC6 deacetylates microtubules (Plasmodium falciparum)
HDAC6 deacetylates microtubules (Dictyostelium discoideum)
HDAC6 deacetylates microtubules (Sus scrofa)
HDAC6 deacetylates microtubules (Bos taurus)
HDAC6 deacetylates microtubules (Canis familiaris)
HDAC6 deacetylates microtubules (Mus musculus)
HDAC6 deacetylates microtubules (Homo sapiens)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Dictyostelium discoideum)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Caenorhabditis elegans)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Drosophila melanogaster)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Gallus gallus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Xenopus tropicalis)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Danio rerio)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Sus scrofa)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Bos taurus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Canis familiaris)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Rattus norvegicus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Mus musculus)
HMGCLL1:Mg2+ cleaves bHMG-CoA to Ac-CoA and ACA (Homo sapiens)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Plasmodium falciparum)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Saccharomyces cerevisiae)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Schizosaccharomyces pombe)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Dictyostelium discoideum)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Caenorhabditis elegans)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Drosophila melanogaster)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Xenopus tropicalis)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Sus scrofa)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Bos taurus)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Canis familiaris)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Rattus norvegicus)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Mus musculus)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Homo sapiens)
acetate + CoA + ATP => acetyl-CoA + AMP + pyrophosphate [cytosolic] (Gallus gallus)
Deacetylation of cohesin (Saccharomyces cerevisiae)
Deacetylation of cohesin (Dictyostelium discoideum)
Deacetylation of cohesin (Gallus gallus)
Deacetylation of cohesin (Danio rerio)
Deacetylation of cohesin (Bos taurus)
Deacetylation of cohesin (Canis familiaris)
Deacetylation of cohesin (Rattus norvegicus)
Deacetylation of cohesin (Mus musculus)
Deacetylation of cohesin (Homo sapiens)
Deacetylation of cohesin (Sus scrofa)
Deacetylation of cleaved cohesin (Gallus gallus)
Deacetylation of cleaved cohesin (Bos taurus)
Deacetylation of cleaved cohesin (Canis familiaris)
Deacetylation of cleaved cohesin (Rattus norvegicus)
Deacetylation of cleaved cohesin (Mus musculus)
Deacetylation of cleaved cohesin (Homo sapiens)
Deacetylation of cleaved cohesin (Sus scrofa)
ACLY tetramer transforms CIT to Ac-CoA (Homo sapiens)
ACLY tetramer transforms CIT to Ac-CoA (Mus musculus)
ACLY tetramer transforms CIT to Ac-CoA (Rattus norvegicus)
ACLY tetramer transforms CIT to Ac-CoA (Canis familiaris)
ACLY tetramer transforms CIT to Ac-CoA (Bos taurus)
ACLY tetramer transforms CIT to Ac-CoA (Sus scrofa)
ACLY tetramer transforms CIT to Ac-CoA (Danio rerio)
ACLY tetramer transforms CIT to Ac-CoA (Xenopus tropicalis)
ACLY tetramer transforms CIT to Ac-CoA (Gallus gallus)
ACLY tetramer transforms CIT to Ac-CoA (Drosophila melanogaster)
ACLY tetramer transforms CIT to Ac-CoA (Caenorhabditis elegans)
ACLY tetramer transforms CIT to Ac-CoA (Dictyostelium discoideum)
ACLY tetramer transforms CIT to Ac-CoA (Schizosaccharomyces pombe)
This entity regulates
Negatively
PKM dephosphorylates PEP to PYR
(Plasmodium falciparum)
PKM dephosphorylates PEP to PYR
(Saccharomyces cerevisiae)
PKM dephosphorylates PEP to PYR
(Schizosaccharomyces pombe)
PKM dephosphorylates PEP to PYR
(Dictyostelium discoideum)
PKM dephosphorylates PEP to PYR
(Caenorhabditis elegans)
PKM dephosphorylates PEP to PYR
(Drosophila melanogaster)
PKM dephosphorylates PEP to PYR
(Gallus gallus)
PKM dephosphorylates PEP to PYR
(Xenopus tropicalis)
PKM dephosphorylates PEP to PYR
(Danio rerio)
PKM dephosphorylates PEP to PYR
(Sus scrofa)
PKM dephosphorylates PEP to PYR
(Bos taurus)
PKM dephosphorylates PEP to PYR
(Canis familiaris)
PKM dephosphorylates PEP to PYR
(Rattus norvegicus)
PKM dephosphorylates PEP to PYR
(Mus musculus)
PKM dephosphorylates PEP to PYR
(Homo sapiens)
Other forms of this molecule
Ac-CoA [Golgi lumen]
Ac-CoA [endoplasmic reticulum lumen]
Ac-CoA [peroxisomal matrix]
Ac-CoA [mitochondrial matrix]
Ac-CoA [nucleoplasm]
Cross References
COMPOUND
C00024
ZINC
000008551095
© 2024
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text