Toggle navigation
About
What is Reactome ?
News
Team
Scientific Advisory Board
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Overlays
DisGeNET
Web
API
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
About
What is Reactome ?
News
Team
Scientific Advisory Board
Editorial Calendar
Release Calendar
Statistics
Our Logo
License Agreement
Privacy Notice
Disclaimer
Digital Preservation
Contact us
Content
Table of Contents
DOIs
Data Schema
Reactome Research Spotlight
ORCID Integration Project
COVID-19 Disease Pathways
Docs
Userguide
Pathway Browser
How do I search ?
Details Panel
Analysis Tools
Analysis Data
Analysis Gene Expression
Species Comparison
Tissue Distribution
Diseases
Cytomics
Review Status of Reactome Events
ReactomeFIViz
Developer's Zone
Graph Database
Analysis Service
Content Service
Pathways Overview
Pathway Diagrams
Icon Info
EHLD Specs & Guidelines
Icon Library Guidelines
Data Model
Computationally inferred events
FAQ
Linking to Us
Citing us
Tools
Pathway Browser
Analyse gene list
Analyse gene expression
Species Comparison
Tissue Distribution
Analysis Service
Content Service
ReactomeFIViz
Overlays
DisGeNET
Web
API
Advanced Data Search
Site Search
Community
Contribute Pathway Knowledge
Icon Library
Outreach
Events
Publications
Partners
Contributors
Resources Guide
Download
Search ...
Go!
Metabolism of proteins
Stable Identifier
R-HSA-392499
Type
Pathway
Species
Homo sapiens
ReviewStatus
5/5
Locations in the PathwayBrowser
Metabolism of proteins (Homo sapiens)
General
SBML
|
BioPAX
Level 2
Level 3
|
PDF
SVG
|
PNG
Low
Medium
High
Click the image above or
here
to open this pathway in the Pathway Browser
Metabolism of proteins, as annotated here, covers the full life cycle of a protein from its synthesis to its posttranslational modification and degradation, at various levels of specificity. Protein synthesis is accomplished through the process of Translation of an mRNA sequence into a polypeptide chain. Protein folding is achieved through the function of molecular chaperones which recognize and associate with proteins in their non-native state and facilitate their folding by stabilizing the conformation of productive folding intermediates (Young et al. 2004). Following translation, many newly formed proteins undergo Post-translational protein modification, essentially irreversible covalent modifications critical for their mature locations and functions (Knorre et al. 2009), including gamma carboxylation, synthesis of GPI-anchored proteins, asparagine N-linked glycosylation, O-glycosylation, SUMOylation, ubiquitination, deubiquitination, RAB geranylgeranylation, methylation, carboxyterminal post-translational modifications, neddylation, and phosphorylation. Peptide hormones are synthesized as parts of larger precursor proteins whose cleavage in the secretory system (endoplasmic reticulum, Golgi apparatus, secretory granules) is annotated in Peptide hormone metabolism. After secretion, peptide hormones are modified and degraded by extracellular proteases (Chertow, 1981 PMID:6117463). Protein repair enables the reversal of damage to some amino acid side chains caused by reactive oxygen species. Pulmonary surfactants are lipids and proteins that are secreted by the alveolar cells of the lung that decrease surface tension at the air/liquid interface within the alveoli to maintain the stability of pulmonary tissue (Agassandian and Mallampalli 2013). Nuclear regulation, transport, metabolism, reutilization, and degradation of surfactant are described in the Surfactant metabolism pathway. Amyloid fiber formation, the accumulation of mostly extracellular deposits of fibrillar proteins, is associated with tissue damage observed in numerous diseases including late phase heart failure (cardiomyopathy) and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's.
Participants
Events
Translation
(Homo sapiens)
Protein folding
(Homo sapiens)
Post-translational protein modification
(Homo sapiens)
Peptide hormone metabolism
(Homo sapiens)
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)
(Homo sapiens)
Protein repair
(Homo sapiens)
Surfactant metabolism
(Homo sapiens)
Amyloid fiber formation
(Homo sapiens)
Mitochondrial protein degradation
(Homo sapiens)
Event Information
Go Biological Process
protein metabolic process (0019538)
Orthologous Events
Metabolism of proteins (Bos taurus)
Metabolism of proteins (Caenorhabditis elegans)
Metabolism of proteins (Canis familiaris)
Metabolism of proteins (Danio rerio)
Metabolism of proteins (Dictyostelium discoideum)
Metabolism of proteins (Drosophila melanogaster)
Metabolism of proteins (Gallus gallus)
Metabolism of proteins (Mus musculus)
Metabolism of proteins (Plasmodium falciparum)
Metabolism of proteins (Rattus norvegicus)
Metabolism of proteins (Saccharomyces cerevisiae)
Metabolism of proteins (Schizosaccharomyces pombe)
Metabolism of proteins (Sus scrofa)
Metabolism of proteins (Xenopus tropicalis)
Authored
Matthews, L (2009-03-05)
Reviewed
Matthews, L (2023-11-09)
Created
Matthews, L (2009-03-05)
© 2024
Reactome
Cite Us!
Cite Us!
Cite Us!
Warning!
Unable to extract citation. Please try again later.
Download As:
BibTeX
RIS
Text