Ephrin signaling

Stable Identifier
Homo sapiens
Locations in the PathwayBrowser
SVG |   | PPTX  | SBGN
Click the image above or here to open this pathway in the Pathway Browser

The interaction between ephrin (EFN) ligands and EPH receptors results not only in forward signaling through the EPH receptor, but also in 'reverse' signaling through the EFN ligand itself. Reverse signaling through EFNB is required for correct spine morphogenesis and proper path-finding of corpus callosum and dorsal retinal axons. The molecular mechanism by which EFNBs transduce a reverse signal involves phosphorylation of multiple, conserved tyrosines on the intracellular domain of B-type ephrins, facilitating binding of the SH2/SH3 domain adaptor protein GRB4 and subsequent cytoskeletal remodeling (Bruckner et al. 1997, Cowan & Henkemeyer 2001, Lu et al. 2001). The other mechanism of reverse signaling involves the C-terminus PSD-95/Dlg/ZO-1 (PDZ)-binding motif of EFNBs which recruits various PDZ domain containing proteins. Phosphorylation and PDZ-dependent reverse signaling by ephrin-B1 have each been proposed to play important roles in multiple contexts in development and disease (Bush & Soriano 2009).

Literature References
PubMed ID Title Journal Year
19515977 Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism

Bush, JO, Soriano, P

Genes Dev. 2009
Participant Of
Orthologous Events
Cite Us!