S100A8:S100A9 binds TLR4:LY96

Stable Identifier
R-HSA-5432849
Type
Reaction [binding]
Species
Homo sapiens
Compartment
Synonyms
Calprotectin binds TLR4:MD2
Locations in the PathwayBrowser
General
SVG |   | PPTX  | SBGN
Click the image above or here to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout

S100A8 (also known as MRP8) and S100A9 (MRP14) are Ca(2+)-binding proteins that are associated with acute and chronic inflammation and cancer (Ehrchen JM et al. 2009; De Jong HK et al. 2015). S100A8 & S100A9 have been identified as important damage-associated molecular patterns (DAMPs) recognized by TLR4 (Foell D et al. 2007; Vogl t et al. 2007; 2012; Kang JH et al. 2015). Surface plasmon resonance studies showed that S100A8 can directly interact with TLR4:MD2 complex with Kd of 1.1-2.5 x 10e-8 M ((Vogl T et al. 2007). Human embryonic kidney cells stably transfected with TLR4,CD14 and MD2 demonstrated a strong induction of proinflammatory cytokines like TNFalpha and IL8 after stimulation with LPS as well as with S100A8 (Vogl T et al. 2007). Induction of NFkB responses by S100A9 in human monocytic THP-1 cell line and mouse bone marrow-derived dendritic cells was TLR4-dependent (Riva M et al. 2012). Moreover, induction of MUC5AC mRNA and protein in normal human bronchial epithelial cells as well as NCI-H292 lung carcinoma cells occurred in a dose-dependent manner trough TLR4 signaling pathway (Kang JH et al. 2015). In addition, S100A8:S100A9 was reported to regulate cell survival of human neutrophils through a signaling mechanism involving an activation of MEK:ERK1 via TLR4 (Atallah M et al. 2012). In experimental mouse models the proinflammatory and TLR4-dependent activities of S100A8:S100AA9 were further confirmed (Vogl t et al. 2007; Loser K et al. 2010; Kuipers MT et al. 2013; Deguchi A et al. 2015).

S100A8 & S100A9 are constitutively expressed in neutrophils, myeloid-derived dendritic cells, platelets, osteoclasts and hypertrophic chondrocytes (Hessian PA et al. 1993; Kumar A et al. 2003; Healy AM et al. 2006; Schelbergen RF et al 2012). In contrast, these molecules are induced under inflammatory stimuli in monocytes/macrophages, microvascular endothelial cells, keratinocytes and fibroblasts (Hessian PA et al. 1993; Eckert RL et al. 2004; Viemann D et al. 2005; McCormick MM et al. 2005; Hsu K et al. 2005). S100A8 & S100A9 tend to form homodimers and heterodimers (Kumar RK et al. 2001; Riva M et al. 2013; Korndorfer IP et al. 2007). The heterodimeric S100A8:S100A9 complex is termed calprotectin and is considered as the predominantly occurring form. In response to stress S100A8:S100A9 is primarily released from activated or necrotic neutrophils to extracellular milieu where it functions as an innate immune mediator of infection, autoimmunity, and cancer (Ehrchen JM et al. 2009; Rammes A et al. 1997; Frosch M et al. 2000; Loser K et al. 2010).

S100A8 and S100A9 protein levels were elevated in patients with a wide range of inflammatory diseases, including rheumatoid arthritis, juvenile idiopathic arthritis, inflammatory bowel disease, acute lung inflammation, sepsis and vasculitis (Ehrchen JM et al. 2009; van Zoelen MA et al. 2009; Vogl T et a;. 2012; Holzinger D et al. 2012; Rahman MT et al. 2014; Anink J et al. 2015. Increased S100A8 and S100A9 serum levels have been also identified as independent risk predictors for various cardiovascular diseases such as acute coronary syndrome and myocardial infarction (Yonekawa K et al. 2011; Cotoi OS et al. 2014; Larsen SB et al. 2015).

Literature References
PubMed ID Title Journal Year
22489132 Pro-Inflammatory S100A8 and S100A9 Proteins: Self-Assembly into Multifunctional Native and Amyloid Complexes

Vogl, T, Gharibyan, AL, Morozova-Roche, LA

Int J Mol Sci 2012
20473308 The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells

Loser, K, Vogl, T, Voskort, M, Lueken, A, Kupas, V, Nacken, W, Klenner, L, Kuhn, A, Foell, D, Sorokin, L, Luger, TA, Roth, J, Beissert, S

Nat. Med. 2010
17767165 Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock

Vogl, T, Tenbrock, K, Ludwig, S, Leukert, N, Ehrhardt, C, van Zoelen, MA, Nacken, W, Foell, D, van der Poll, T, Sorg, C, Roth, J

Nat. Med. 2007
Participants
Participant Of
Orthologous Events
Authored
Reviewed
Created