p-T68-CHEK2 autophosphorylates

Stable Identifier
R-HSA-5683792
Type
Reaction [transition]
Species
Homo sapiens
Compartment
ReviewStatus
5/5
Locations in the PathwayBrowser
General
SVG |   | PPTX  | SBGN
Click the image above or here to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout
Upon dimerization, p-T68-CHEK2 protomers trans-autophosphorylate on serine residue S379 (Lovly et al. 2008) and threonine residues T383 and T387 (Lee et al. 2001). Autophosphorylation leads to dissociation of CHEK2 dimers into active CHEK2 monomers (Cai et al. 2009).
Literature References
PubMed ID Title Journal Year
19782031 Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase

Cai, Z, Pavletich, NP, Chehab, NH

Mol. Cell 2009
18644861 Regulation of Chk2 ubiquitination and signaling through autophosphorylation of serine 379

Piwnica-Worms, H, Lovly, CM, Yan, L, Takada, S, Ryan, CE

Mol. Cell. Biol. 2008
11390408 The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation

Lee, CH, Chung, JH

J. Biol. Chem. 2001
Participants
Participates
Catalyst Activity

protein serine/threonine kinase activity of p-T68-CHEK2 dimer [nucleoplasm]

Orthologous Events
Authored
Reviewed
Created
Cite Us!