AKR1A1 oxidises BaPtDHD to BaP-7,8-dione

Stable Identifier
R-HSA-5692232
Type
Reaction [transition]
Species
Homo sapiens
Compartment
Locations in the PathwayBrowser
General
SVG |   | PPTX  | SBGN
Click the image above or here to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout

Polycyclic aromatic hydrocarbons (PAHs) are pro-carcinogens which require further metabolic activation to ellicit their harmful effects. Aldo-keto reductases (AKRs) such as alcohol dehydrogenase [NADP+] (AKR1A1) can catalyse the oxidation of proximate carcinogenic PAH trans-dihydrodiols to reactive and redox active PAH o-quinones. Redox-cycling of PAH o-quinones generate reactive oxygen species and subsequent oxidative DNA damage. The proximate PAH carcinogen benzo[a]pyrene-7,8-trans-dihydrodiol (BaPtDHD) is oxidised by AKR1A1 to yield BaP-7,8-catechol which is unstable and auto-oxidises to yield BaP-7,8-dione (Zhang et al. 2012).

Literature References
Participants
Participant Of
Catalyst Activity
Catalyst Activity
Title
aldo-keto reductase (NADP) activity of AKR1A1 [cytosol]
Physical Entity
Activity
Orthologous Events
Authored
Reviewed
Created