Reactome: A Curated Pathway Database

IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation

Stable Identifier
R-HSA-975163
Type
Pathway
Species
Homo sapiens
Compartment
Locations in the PathwayBrowser
Summation

Although IRAK-1 was originally thought to be a key mediator of TRAF6 activation in the IL1R/TLR signaling (Dong W et al. 2006), recent studies showed that IRAK-2, but not IRAK-1, led to TRAF6 polyubiquitination (Keating SE et al 2007). IRAK-2 loss-of-function mutants, with mutated TRAF6-binding motifs, could no longer activate NF-kB and could no longer stimulate TRAF-6 ubiquitination (Keating SE et al 2007). Furthermore, the proxyvirus protein A52 - an inhibitor of all IL-1R/TLR pathways to NF-kB activation, was found to interact with both IRAK-2 and TRAF6, but not IRAK-1. Further work showed that A52 inhibits IRAK-2 functions, whereas association with TRAF6 results in A52-induced MAPK activation. The strong inhibition effect of A52 was also observed on the TLR3-NFkB axis and this observation led to the discovery that IRAK-2 is recruited to TLR3 to activate NF-kB (Keating SE et al 2007). Thus, A52 possibly inhibits MyD88-independent TLR3 pathways to NF-kB via targeting IRAK-2 as it does for other IL-1R/TLR pathways, although it remains unclear how IRAK-2 is involved in TLR3 signaling.

IRAK-2 was shown to have two TRAF6 binding motifs that are responsible for initiating TRAF6 signaling transduction (Ye H et al 2002).

Literature References
Participants
Participant Of
Orthologous Events
Cross References