Search results for AKR1D1

Showing 7 results out of 7

×

Species

Types

Compartments

Search properties

Species

Types

Compartments

Search properties

Protein (1 results from a total of 1)

Identifier: R-HSA-191975
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: AKR1D1: P51857

Reaction (6 results from a total of 6)

Identifier: R-HSA-193746
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
4-Cholesten-7alpha,24(S)-diol-3-one, NADPH, and H+ react to form 5beta-cholestan-7alpha,24(S)-diol-3-one and NADP+. This reaction is catalyzed by AKR1D1 (3-oxo-5-beta-steroid 4-dehydrogenase). AKR1D1 is localized to the cytosol, and in the course of the reaction its steroid substrate moves from the endoplasmic reticulum membrane to the cytosol. It is unclear whether this translocation results simply from its increased hydrophilicity or is mediated by the enzyme or another transport protein (Russell 2003).
Identifier: R-HSA-192067
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
4-Cholesten-7alpha, 12alpha-diol-3-one and NADPH + H+ react to form 5beta-cholesten-7alpha,12alpha-diol-3-one + NADP+. This reaction is catalyzed by AKR1D1 (3-oxo-5-beta-steroid 4-dehydrogenase). AKR1D1 is localized to the cytosol, and in the course of the reaction its steroid substrate moves from the endoplasmic reticulum membrane to the cytosol. It is unclear whether this translocation results simply from its increased hydrophilicity or is mediated by the enzyme or another transport protein (Russell 2003).
Identifier: R-HSA-192033
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
4-Cholesten-7alpha-ol-3-one, NADPH, and H+ react to form 5beta-cholestan-7alpha-ol-3-one and NADP+. This reaction is catalyzed by AKR1D1 (3-oxo-5-beta-steroid 4-dehydrogenase). AKR1D1 is localized to the cytosol, and in the course of the reaction its steroid substrate moves from the endoplasmic reticulum membrane to the cytosol. It is unclear whether this translocation results simply from its increased hydrophilicity or is mediated by the enzyme or another transport protein (Russell 2003).
Identifier: R-HSA-193824
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
4-Cholesten-7alpha,27-diol-3-one, NADPH, and H+ react to form 5beta-cholestan-7alpha,27-diol-3-one and NADP+. This reaction is catalyzed by AKR1D1 (3-oxo-5-beta-steroid 4-dehydrogenase). AKR1D1 is localized to the cytosol, and in the course of the reaction its steroid substrate moves from the endoplasmic reticulum membrane to the cytosol. It is unclear whether this translocation results simply from its increased hydrophilicity or is mediated by the enzyme or another transport protein (Russell 2003).
Identifier: R-HSA-193821
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
4-Cholesten-7alpha,12alpha,27-triol-3-one and NADPH + H+ react to form 5beta-cholesten-7alpha,12alpha,27-triol-3-one + NADP+. This reaction is catalyzed by AKR1D1 (3-oxo-5-beta-steroid 4-dehydrogenase). AKR1D1 is localized to the cytosol, and in the course of the reaction its steroid substrate moves from the endoplasmic reticulum membrane to the cytosol. It is unclear whether this translocation results simply from its increased hydrophilicity or is mediated by the enzyme or another transport protein (Russell 2003).
Identifier: R-HSA-193755
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
4-cholesten-7alpha,12alpha,24(S)-triol-3-one and NADPH + H+ react to form 5beta-cholesten-7alpha,12alpha,24(S)-triol-3-one and NADP+. This reaction is catalyzed by AKR1D1 (3-oxo-5-beta-steroid 4-dehydrogenase). AKR1D1 is localized to the cytosol, and in the course of the reaction its steroid substrate moves from the endoplasmic reticulum membrane to the cytosol. It is unclear whether this translocation results simply from its increased hydrophilicity or is mediated by the enzyme or another transport protein (Russell 2003).
Cite Us!