Search results for ARF1

Showing 18 results out of 43

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (2 results from a total of 2)

Identifier: R-HSA-199971
Species: Homo sapiens
Compartment: Golgi membrane
Primary external reference: UniProt: ARF1: P84077
Identifier: R-HSA-200826
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: ARF1: P84077

DNA Sequence (1 results from a total of 1)

Identifier: R-HSA-8950279
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: ENSEMBL: ARF1: ENSG00000143761

Reaction (5 results from a total of 23)

Identifier: R-HSA-8870499
Species: Homo sapiens
Compartment: Golgi membrane
Proteins with the plekstrin homology (PH) domain are able to bind specific phosphoinositides. Pleckstrin homology domain-containing family A members 3 and 8 (PLEKHA3 and PLEKHA8 aka FAPP1 and FAPP2) specifically bind phosphoinositide 4-phosphate (PI4P, PtdIns(4)P), a key intermediate in the synthesis of phosphoinositide 4,5-diphosphate (PIP2). PLEKHA3 and 8 are localised to the trans-Golgi network (TGN) where they interact with PI4P and the small GTPase ADP-ribosylation factor (ARF1) through their PH domains and mediate the transport of lipid cargo from the Golgi to the plasma membrane (Godi et al. 1999, Godi et al. 2004).
Identifier: R-HSA-8847883
Species: Homo sapiens
Compartment: Golgi membrane
CYTH proteins stimulate the GTPase activity of ARF1, promoting the exchange of GTP for GDP and thereby inactivating ARF1 (Franco et al, 1998; Drin et al, 2008; reviewed in Jackson and Casanova, 2000).
Identifier: R-HSA-8847880
Species: Homo sapiens
Compartment: Golgi membrane
Cytohesin (CYTH) proteins 1, 2, 3 and 4 are ARF guanine nucleotide exchange factors (GEFs) for ARF1 as well as other ARFs. Recruitment to the membrane is mediated by direct interaction with ARF1:GTP as well as an interaction between the CYTH plexstrin homology (PH) domain and the lipid membrane (Chardin et al, 1996; Betz et al, 1998; Mossessova et al, 1998; Cherfils et al, 1998; Franco et al, 1998; Osagawara et al, 2000; Malaby et al, 2013).
Identifier: R-HSA-8847875
Species: Homo sapiens
Compartment: Golgi membrane
TRIP11, also known as GMAP210, is a cis-Golgi localized coiled coil Golgin with roles in anterograde and retrograde intra-Golgi trafficking (Infante et al, 1999; Pernet-Gallay et al, 2002). TRIP11 has an N-terminal amphipathic lipid packing sensor (ALPS) domain which binds preferentially to highly curved membranes such as those on veiscles, and a GRIP-related ARF binding (GRAB) domain at its C-terminus that binds to ARF1:GTP. This asymmetric binding allows TRIP11 to tether vesicles to the Golgi membrane. This asymmetric binding of TRIP11 is maintained in part by the fact that ARFGAP1 also contains an ALPS domain and therefore stimulates the GTPase activity of any ARF1:GTP that is present in the vesicular membrane (Drin et al, 2008; Cardenas et al, 2009; Gillingham et al, 2004).
Identifier: R-HSA-1676152
Species: Homo sapiens
Compartment: Golgi membrane, cytosol
At the Golgi membrane, ADP-ribosylation factor 1 and 3 (ARF1 and ARF3) complexed to GTP bind to phosphatidylinositol 4-kinase beta (PI4KB) and activate it (Haynes et al. 2007, Wong et al. 1997, Godi et al. 1999).

Complex (5 results from a total of 12)

Identifier: R-HSA-1806287
Species: Homo sapiens
Compartment: Golgi membrane
Identifier: R-HSA-1806286
Species: Homo sapiens
Compartment: Golgi membrane
Identifier: R-HSA-199981
Species: Homo sapiens
Compartment: Golgi membrane
Identifier: R-HSA-201340
Species: Homo sapiens
Compartment: cytosol
Identifier: R-HSA-8847867
Species: Homo sapiens
Compartment: Golgi membrane

Set (1 results from a total of 1)

Identifier: R-HSA-1806258
Species: Homo sapiens
Compartment: Golgi membrane

Pathway (4 results from a total of 4)

Identifier: R-HSA-8950505
Species: Homo sapiens
Compartment: nucleoplasm
Experiments using human cord blood CD4(+) T cells show 22 protein spots and 20 protein spots, upregulated and downregulated proteins respectively, following Interleukin-12 stimulation (Rosengren et.al, 2005). The identified upregulated proteins are: BOLA2, PSME2, MTAP, CA1, GSTA2, RALA, CNN2, CFL1, TCP1, HNRNPDL, MIF, AIP, SOD1, PPIA and PDCD4.
And the identified downregulated proteins are:
ANXA2, RPLP0, CAPZA1, SOD2, SNRPA1, LMNB1, LCP1, HSPA9, SERPINB2, HNRNPF, TALDO1, PAK2, TCP1, HNRNPA2B1, MSN, PITPNA, ARF1, SOD2, ANXA2, CDC42, RAP1B and GSTO1.
Identifier: R-HSA-9679504
Species: Homo sapiens
After entry and uncoating, the SARS-CoV-1 genomic RNA serves as a transcript to allow cap dependent translation of ORF1a to produce polyprotein pp1a. A slippery sequence and an RNA pseudoknot near the end of ORF1a enable 25 - 30% of the ribosomes to undergo -1 frameshifting, to continue translation of ORF1b to produce a longer polyprotein pp1ab. The autoproteolytic cleavage of pp1a and pp1ab generates 15-16 nonstructural proteins (nsps) with various functions. The RNA dependent RNA polymerase (RdRP) activity is encoded in nsp12, and papain like protease (PLPro) and main protease (Mpro) activities are encoded in nsp3 and nsp5, respectively. nsp3, 4, and 6 induce rearrangement of the cellular membrane to form double membrane vesicles (DMVs) where the coronavirus replication transcription complex (RTC) is assembled and anchored.

Programmed ribosomal frameshifting (PRF) may be regulated by viral or host factors in addition to viral RNA secondary structures. For example, PRF in the related arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) is transactivated by the viral protein nsp1, which interacts with the PRF signal via a putative RNA binding motif. A host RNA-binding protein called annexin A2 (ANXA2) binds the pseudoknot structure in the IBV genome. Host factors in the early secretory pathway appear to be involved in DMV formation and RTC assembly: Golgi specific brefeldin A resistance guanine nucleotide exchange factor 1 (GBF1) and its effector ADP ribosylation factor 1 (ARF1) are both required for normal DMV formation and efficient RNA replication of mouse hepatitis virus (MHV), a prototypic betacoronavirus that infects mice (Fung & Liu 2019).

Identifier: R-HSA-9694676
Species: Homo sapiens
This COVID-19 pathway has been created by a combination of computational inference from SARS-CoV-1 data (https://reactome.org/documentation/inferred-events) and manual curation, as described in the summation for the overall SARS-CoV-2 infection pathway.

After entry and uncoating, the genomic RNA serves as a transcript to allow cap dependent translation of ORF1a to produce polyprotein pp1a. A slippery sequence and an RNA pseudoknot near the end of ORF1a enable 25 - 30% of ribosomes to undergo -1 frameshifting, to continue translation of ORF1b to produce a longer polyprotein pp1ab. Autoproteolytic cleavage of pp1a and pp1ab generates 15-16 nonstructural proteins (nsps) with various functions. RNA dependent RNA polymerase (RdRP) activity is encoded in nsp12, and papain like protease (PLPro) and main protease (Mpro) activities are encoded in nsp3 and nsp5, respectively. nsp3, 4, and 6 induce rearrangement of the cellular membrane to form double membrane vesicles (DMVs) where the coronavirus replication transcription complex (RTC) is assembled and anchored.

Programmed ribosomal frameshifting (PRF) may be regulated by viral or host factors in addition to viral RNA secondary structures. For example, PRF in the related arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) is transactivated by the viral protein nsp1, which interacts with the PRF signal via a putative RNA binding motif. A host RNA-binding protein called annexin A2 (ANXA2) binds the pseudoknot structure in the IBV genome. Host factors in the early secretory pathway appear to be involved in DMV formation and RTC assembly: Golgi specific brefeldin A resistance guanine nucleotide exchange factor 1 (GBF1) and its effector ADP ribosylation factor 1 (ARF1) are both required for normal DMV formation and efficient RNA replication of mouse hepatitis virus (MHV), a prototypic betacoronavirus that infects mice (Fung & Liu 2019).

Identifier: R-HSA-9639288
Species: Homo sapiens
The mTORC1 complex acts as an integrator that regulates translation, lipid synthesis, autophagy, and cell growth in response to multiple inputs, notably glucose, oxygen, amino acids, and growth factors such as insulin (reviewed in Sabatini 2017, Meng et al. 2018, Kim and Guan 2019).
MTOR, the kinase subunit of mTORC1, is activated by interaction with RHEB:GTP at the cytosolic face of lysosomal membrane (Long et al. 2005, Tee et al. 2005, Long et al. 2007, Yang et al. 2017). Recruitment of mTORC1 to the lysosomal membrane is intricate and incompletely understood. At the center of the system is a complex of two small GTPases, the Rag heterodimer (RRAGA or RRAGB bound to RRAGC or RRAGD). The Rag heterodimer is tethered to the membrane by the Ragulator complex, which also binds the v-ATPase complex. The Rag heterodimer acts as a cross-regulating switch, with the binding of GTP by one subunit inhibiting the exchange of GDP for GTP by the other subunit (Shen et al. 2017). The active conformation of the Rag heterodimer that recruits mTORC1 to the lysosomal membrane is RRAGA,B:GTP:RRAGC,D:GDP while the inactive conformation, RRAGA,B:GDP:RRAGC,D:GTP, releases mTORC1 (Sancak et al. 2008, Kim et al. 2008, Sancak et al. 2010, Lawrence et al. 2018). GTPase activating proteins (GAPs) and guanyl nucleotide exchange factors (GEFs) acting upon the Rag heterodimer thereby regulate recruitment of mTORC1. RHEB:GTP at the lysosomal membrane also binds mTORC1 and directly activates mTORC1. During inactivation of mTORC1 in response to removal of amino acids, the TSC complex, a GAP for RHEB, is required in addition to the inactive Rag complex to release mTORC1 from RHEB and hence fully release mTORC1 from the lysosomal membrane (Demetriades et al. 2014).
Amino acids regulate recruitment of mTORC1 to the lysosomal membrane by at least 4 mechanisms (reviewed in Zhuang et al. 2019, Wolfson and Sabatini 2017, Yao et al. 2017). 1) Sestrin1 (SESN1) or Sestrin2 (SESN2) binds leucine and the Sestrin1,2:leucine complex is then released from the GATOR2 complex, allowing GATOR2 to positively regulate mTORC1 activation (Chantranupong et al. 2014, Parmigiani et al. 2014, Kim et al. 2015, Wolfson et al. 2016, Saxton et al. 2016). 2) CASTOR1 in a homodimer or a heterodimer with CASTOR2 binds arginine and the CASTOR1:arginine complex is likewise released from GATOR2, allowing GATOR2 to activate mTORC1 (Chantranupong et al. 2016, Saxton et al. 2016, Gai et al. 2016, Xia et al. 2016). 3) BMT2 (SAMTOR), a negative regulator of mTORC1 activation, binds S-adenosylmethionine (SAM), a derivative of methionine (Gu et al. 2017). The binding of SAM causes BMT2 to dissociate from GATOR1, allowing the activation of mTORC1. 4) The amino acid transporter SLC38A9 binds arginine and SLC38A9 then acts as a GEF to convert RRAGA,B:GDP to the active form, RRAGA,B:GTP (Rebsamen et al. 2015, Wang et al. 2015, Wyant et al. 2017, Shen and Sabatini 2018). Amino acid starvation also regulates the assembly of the V0 and V1 subunits of v-ATPase by an uncharacterized mechanism (Stransky and Forgac 2015) and v-ATPase is required for activation of mTORC1 by amino acids (Zoncu et al. 2011). Glutamine activates mTORC1 by a mechanism that is independent of the Rag GTPases, requires ARF1, but is not yet fully elucidated (Jewell et al. 2015).
Cite Us!