Search results for ARF1

Showing 24 results out of 24

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Reaction (24 results from a total of 24)

Identifier: R-HSA-8870499
Species: Homo sapiens
Compartment: Golgi membrane
Proteins with the plekstrin homology (PH) domain are able to bind specific phosphoinositides. Pleckstrin homology domain-containing family A members 3 and 8 (PLEKHA3 and PLEKHA8 aka FAPP1 and FAPP2) specifically bind phosphoinositide 4-phosphate (PI4P, PtdIns(4)P), a key intermediate in the synthesis of phosphoinositide 4,5-diphosphate (PIP2). PLEKHA3 and 8 are localised to the trans-Golgi network (TGN) where they interact with PI4P and the small GTPase ADP-ribosylation factor (ARF1) through their PH domains and mediate the transport of lipid cargo from the Golgi to the plasma membrane (Godi et al. 1999, Godi et al. 2004).
Identifier: R-HSA-8847883
Species: Homo sapiens
Compartment: Golgi membrane
CYTH proteins stimulate the GTPase activity of ARF1, promoting the exchange of GTP for GDP and thereby inactivating ARF1 (Franco et al, 1998; Drin et al, 2008; reviewed in Jackson and Casanova, 2000).
Identifier: R-HSA-8847880
Species: Homo sapiens
Compartment: Golgi membrane
Cytohesin (CYTH) proteins 1, 2, 3 and 4 are ARF guanine nucleotide exchange factors (GEFs) for ARF1 as well as other ARFs. Recruitment to the membrane is mediated by direct interaction with ARF1:GTP as well as an interaction between the CYTH plexstrin homology (PH) domain and the lipid membrane (Chardin et al, 1996; Betz et al, 1998; Mossessova et al, 1998; Cherfils et al, 1998; Franco et al, 1998; Osagawara et al, 2000; Malaby et al, 2013).
Identifier: R-HSA-8847875
Species: Homo sapiens
Compartment: Golgi membrane
TRIP11, also known as GMAP210, is a cis-Golgi localized coiled coil Golgin with roles in anterograde and retrograde intra-Golgi trafficking (Infante et al, 1999; Pernet-Gallay et al, 2002). TRIP11 has an N-terminal amphipathic lipid packing sensor (ALPS) domain which binds preferentially to highly curved membranes such as those on veiscles, and a GRIP-related ARF binding (GRAB) domain at its C-terminus that binds to ARF1:GTP. This asymmetric binding allows TRIP11 to tether vesicles to the Golgi membrane. This asymmetric binding of TRIP11 is maintained in part by the fact that ARFGAP1 also contains an ALPS domain and therefore stimulates the GTPase activity of any ARF1:GTP that is present in the vesicular membrane (Drin et al, 2008; Cardenas et al, 2009; Gillingham et al, 2004).
Identifier: R-HSA-1676152
Species: Homo sapiens
Compartment: Golgi membrane, cytosol
At the Golgi membrane, ADP-ribosylation factor 1 and 3 (ARF1 and ARF3) complexed to GTP bind to phosphatidylinositol 4-kinase beta (PI4KB) and activate it (Haynes et al. 2007, Wong et al. 1997, Godi et al. 1999).
Identifier: R-HSA-8951498
Species: Homo sapiens
Compartment: trans-Golgi network membrane, Golgi membrane, cytosol
The trans-Golgi network (TGN) is the sorting and package centre for trafficking cargo to the endoplasmic reticulum, plasma membrane and endosomes. Signal peptides determine the sorting and trafficking of proteins to the endosomal-lysosomal pathway or to the cell surface. The main signals that mediate targeting of MHC-II molecules to the endocytic pathway are two dileucine-based motifs, Leu23-Ile24 and Pro31-Leu33 present in the short cytoplasmic tail of Ii (Odorizzi et al. 1994). These motifs bind both the adaptor proteins AP-1 and AP-2, which are components of clathrin coats associated with the TGN/endosomes and the plasma membrane, respectively (McCormick et al. 2005). The precise pathway of class II:Ii complex trafficking from TGN to endocytic pathway is not well understood. In one view MHC II:Ii complexes directly traffic from the TGN to lysosomes, possibly using AP-1 dependent endocytic vesicles (Peters et al. 1991, Amigorena et al. 1994). Alternatively trafficking occurs via transient expression on the cell surface followed by rapid internalization and delivery to endocytic compartments. Early immunoelectron microscopy data has shown the presence of MHC class II:Ii complex molecules primarily in TGN and lysosomes (Peters et al. 1991, Hiltbold & Roche 2002). This theory was further supported by a study examining the trafficking of sulphate-tagged class II molecules, which concluded that the rapid appearance of these molecules in lysosomes was consistent with their direct transport from the TGN to lysosomes (Hiltbold & Roche 2002, Davidson 1999). The transport of cargo MHC II:Ii complexes from the TGN to lysosomes may be mediated by small TGN vesicles coated with AP-1 and clathrin. The di-leucine-based sorting signal in the Ii cytoplasmic chain recruits AP-1 and clathrin from cytosol to TGN to form AP-1 clathrin-coated TGN-derived vesicles. This process is regulated by the small GTPase ARF-1 (Salamero et al. 1996).
Identifier: R-HSA-200879
Species: Homo sapiens
Compartment: cytosol, early endosome membrane, plasma membrane
The HIV Nef protein downregulates CD4 through sequential connection with clathrin-coated pits and the COP1 coatomer, resulting in accelerated endocytosis and lysosomal targeting. The small GTPase ARF1 controls the Nef-induced, COP-mediated late-endosomal targeting of CD4. Nef binds ARF1 directly and can recruit the GTPase onto endosomal membranes, leading to the eventual degradation of CD4 (Faure et al. 2004).
Identifier: R-HSA-8950173
Species: Homo sapiens
Compartment: cytosol, nucleoplasm
Experiments using human cord blood CD4(+) T cells show 22 protein spots and 20 protein spots, upregulated and downregulated proteins respectively, following Interleukin-12 stimulation (Rosengren et.al, 2005). Among the down-regulated proteins is :ADP-ribosylation factor 1(ARF1).
Identifier: R-HSA-2730842
Species: Homo sapiens
Compartment: plasma membrane, cytosol
Phosphorylated Y452, Y476, and Y584 of GAB2 binds p85 regulatory subunit of PI3K kinase, resulting in activation of PI3K pathway. PI3K is required for mast cell degranulation and anaphylaxis response but not for cytokine production or contact hypersensitivity (Nishida et al. 2011). Activated PI3K generates second messenger PtdInsP3 (PIP3) at the inner membrane, which provides docking sites for pleckstrin homology (PH) domains of PDK1, AKT and BTK. Activated AKT controls major downstream targets like mTORC1, FOXO3 and GSK3beta pathways that regulate mast cell growth, homeostasis, and cytokine production. BTK triggers PLCgamma2 activation, thereby inducing activation of the transcription factor NFAT and NF-kB.
Identifier: R-HSA-6807868
Species: Homo sapiens
Compartment: endoplasmic reticulum-Golgi intermediate compartment membrane
GBF1 facilitates the exchange of GDP for GTP, activating ARF (Niu et al, 2005; Szul et al, 2005; Szul et al, 2007; Kawamoto et al, 2002; reviewed in Szul and Sztul, 2011).
Identifier: R-HSA-6811414
Species: Homo sapiens
Compartment: Golgi membrane
GBF1 facilitates the exchange of GDP for GTP, activating ARF (Niu et al, 2005; Szul et al, 2005; Szul et al, 2007; Kawamoto et al, 2002; reviewed in Szul and Sztul, 2011).
Identifier: R-HSA-6811411
Species: Homo sapiens
Compartment: Golgi membrane
GBF1 recruits inactive ARF:GDP complexes to the Golgi (Monetta et al, 2007). There are 5 known ARFs in the human cell. Class I members ARF1 and ARF 3 are expressed at high levels and broadly distributed through the secretory system, while Class II members ARF4 and 5 are expressed at lower levels. ARF6, the single Class III ARF, appears to function more specifically in endocytosis and actin dynamics (Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006; Szul and Sztul, 2011). GBF1 has been shown to activate ARF1, 4, and 5, but not ARF3, while single and pairwise knockdown of ARF1, 3, 4 and 5 suggests that no single ARF is responsible for any given step in the secretory pathway (Manolea et al, 2010; Volpicelli-Daley et al, 2005).
Identifier: R-HSA-6807866
Species: Homo sapiens
Compartment: endoplasmic reticulum-Golgi intermediate compartment membrane
GBF1 recruits inactive ARF:GDP complexes to the ERGIC (Monetta et al, 2007). There are 5 known ADP-ribosylation factor proteins (ARFs) in the human cell. Class I members ARF1 and ARF 3 are expressed at high levels and broadly distributed through the secretory system, while Class II members ARF4 and ARF5 are expressed at lower levels, with ARF4 showing the most specific localization to the ERGIC compartment. ARF6, the single Class III ARF, appears to function more specifically in endocytosis and actin dynamics (Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006; Szul and Sztul, 2011). There is conflicting evidence regarding what ARF(s) is required at the ERGIC membrane. GBF1 has been shown to activate ARF1, 4, and 5, but not ARF3, while single and pairwise knockdown of ARF1, 3, 4 and 5 suggests that although no single ARF is responsible for any given step in the secretory pathway, ARF1 and ARF3 contribute most specifically to the ERGIC-Golgi step (Manolea et al, 2010; Volpicelli-Daley et al, 2005). Recruitment of ARF at may also be facilitated by interaction with p24 family members (Gommel et al, 2001; reviewed in Schuiki and Volchuk, 2012).
Identifier: R-HSA-6811412
Species: Homo sapiens
Compartment: Golgi membrane
Activation of ARF is tightly correlated to recruitment of the COPI coat (Donaldson et al, 1991; Serafini et al, 1991; Donaldson et el, 1992; Palmer et al, 1993; reveiwed in Szul and Sztul, 2011). Studies in yeast and in mammalian cells support a direct interaction between the GTPase and components of the COPI coat (Zhao et al, 1997; Zhao et al, 1999; Zhao et al, 2006; Eugster et al, 2000; Sun et al, 2007; Yu et al, 2012; Harter and Wieland, 1998; Bethune et al, 2006; reviewed in Popoff et al, 2011). The COPI coat consists of 7 subunits arranged in 2 subcomplexes. The inner coat is made up of a tetrameric complex consisting of the beta, gamma, zeta and delta COPI subunits, while the outer coat is a trimer consisting of the alpha, beta prime and epsilon subunits (Eugster et al, 2000; Waters et al, 1991). Both of the zeta and gamma subunits have 2 isoforms with different subcellular locations, suggesting that different COPI coats may mediate different steps of the secretory pathway (Moelleken et al, 2007). Unlike the case for COPII or clathrin coats, all components of the COPI coat are recruited simultaneously as a preformed heptameric complex (Hara-Kuge et al, 1994).
Identifier: R-HSA-6807872
Species: Homo sapiens
Compartment: endoplasmic reticulum-Golgi intermediate compartment membrane
Activation of ARF is tightly linked to the recruitment of the COPI coat (Donaldson et al, 1991; Serafini et al, 1991; Donaldson et el, 1992; Palmer et al, 1993; reveiwed in Szul and Sztul, 2011). Studies in yeast and in mammalian cells support a direct interaction between the GTPase and components of the COPI coat; recruitment may also be facilitated by interactions with p24 family members (Zhao et al, 1997; Zhao et al, 1999; Zhao et al, 2006; Eugster et al, 2000; Aguillera-Ramiero et al, 2008; Sun et al, 2007; Yu et al, 2012; Harter and Wieland, 1998; Bethune et al, 2006; reviewed in Popoff et al, 2011). The COPI coat consists of 7 subunits arranged in 2 subcomplexes. The inner coat is made up of a tetrameric complex consisting of the beta, gamma, zeta and delta COPI subunits, while the outer coat is a trimer consisting of the alpha, beta prime and epsilon subunits (Eugster et al, 2000; Waters et al, 1991). Both of the zeta and gamma subunits have 2 isoforms with different subcellular locations, suggesting that different COPI coats may mediate different steps of the secretory pathway (Moelleken et al, 2007). Unlike the case for COPII or clathrin coats, all components of the COPI coat are recruited simultaneously as a preformed heptameric complex (Hara-Kuge et al, 1994)
Identifier: R-HSA-6811415
Species: Homo sapiens
Compartment: Golgi membrane
In its GTP-bound active state, RAB1 recruits the ARF GEF GBF1 to the Golgi (Monetta et al, 2007). GBF is the only ARF activator required for the formation of COPI coats, and therefore it has roles in the anterograde ERGIC-to-cis-Golgi as well as in COPI-mediated retrograd transport within the Golgi and back to the ERGIC and ER (Kawamoto et al, 2002; Szul et al, 2005; Zhao et al, 2006; Szul et al, 2007; reviewed in Szul and Sztul, 2011). GBR1 activates ARF1, 2, 3 and 5 which play overlapping roles in the secretory pathway (Volpicelli-Daley et al, 2005; Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006).
Identifier: R-HSA-6807864
Species: Homo sapiens
Compartment: endoplasmic reticulum-Golgi intermediate compartment membrane
In its GTP-bound active state, RAB1 recruits the ARF GEF GBF1 to the ERGIC (Monetta et al, 2007). GBF1 is the only ARF activator required for the formation of COPI coats, and it therefore has roles in the anterograde ERGIC-to-cis-Golgi pathway as well as in COPI-mediated retrograde transport within the Golgi and back to the ERGIC and ER (Kawamoto et al, 2002; Szul et al, 2005; Zhao et al, 2006; Szul et al, 2007; reviewed in Szul and Sztul, 2011). GBF1 activates ARF4 which is concentrated at the ERGIC compartment, but also ARF1 and ARF5 which have more generalized localization within the secretory pathway (Volpicelli-Daley et al, 2005; Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006). GBF1 also interacts with the USO1 homodimer, a long coiled-coil tethering factor (Garcia-Mata and Sztul, 2003).
Identifier: R-HSA-6811428
Species: Homo sapiens
Compartment: trans-Golgi network membrane
RAB proteins are required for the RINT-1/ZW10 and COG-dependent organization of the Golgi ribbon stack, and for the trafficking of proteins through the Golgi. Indeed, cargo traffic through the Golgi depends on the maintenance of the Golgi stacks (Hirose et al, 2004; Arasaki et al, 2006; Sun et al, 2007; reviewed in Liu and Storrie, 2015). RAB6 is the primary RAB protein involved in intra-Golgi trafficking; it also has roles in COPI-independent retrograde traffic from the Golgi to the ER. RAB6A is a widely expressed isoform, while RAB6B is restricted to neuronal tissue (Darchen and Goud, 2000). RAB6 is localized to the trans-Golgi network (TGN), and a GTP-locked constitutively active form induces concentration of Golgi enzymes into the ER (Ferrano et al, 2104; Jiang and Storrie, 2005; Martinex et al, 1997; Micaroni et al, 2013; Storrie et al, 2012; Sun et al, 2007; Young et al, 2005). Inactive RAB6:GDP is recruited to the TGN through interaction with the RIC1:RGP1 complex, which also acts as a guanine nucleotide exchange factor (GEF) for RAB6 (Pusapati et al, 2012; Siniossoglou et al, 2000; Siniossoglou et al, 2001).
Identifier: R-HSA-6811417
Species: Homo sapiens
Compartment: Golgi membrane
Binding and polymerization of coatomer is coordinated with the incorporation of cargo proteins and Golgi-targeting snares, as well as with recruitment of ARFGAP proteins (Letourneur et al, 1994; Nagahama et al,1996; Bremser et al, 1999).
Typical cargo for COPI-mediated retrograde traffic includes the KDEL receptors, which bind and recycle ER-resident proteins, as well as other cycling proteins such as SURF4 that interacts with p24 proteins and contributes to Golgi maintenance (Cosson and Letourner, 1994; Ben-Tekaya et al, 2005; Majoul et al, 2001; Orci et al, 1997, Bremser et al, 1999; Presley et al, 1997; Mitrovic et al, 2008; reviewed in Beck et al, 2009).
Other protein components of the COPI vesicle include the p24 family of proteins, which serve diverse roles in the early secretory pathway (reviewed in Schuiki and Volchuk, 2012). Oligomeric p24 proteins interact with ADP-bound ARF and components of the COPI coat, contributing to coatomer recruitment and oligomerization (Gommel et al, 2001; Majoul et al, 2001; Bethune et al, 2006; Harter and Wieland, 1998; Langer et al, 2008; Reinhard et al, 1999). p24 proteins also act as cargo receptors for various proteins destined for packaging in COPI vesicles; these include GPI-anchored transmembrane proteins, WNT ligands and some G-protein coupled receptors, among others (Takida et al, 2008; Bonnon et al, 2010; Luo et al, 2011; Beuchling et al, 2011; Wang and Kazanietz, 2002; reviewed in Schuiki and Volchuk, 2012). p24 proteins also contribute to COPI coat disassembly by restricting ARF GTPase activity until cargo has been loaded (Goldberg, 2000; Lanoix et al, 2001).
ARFGAPs are recruited to the budding vesicle through direct interaction with active ARF, the cytoplasmic tails of cargo proteins and with components of the COPI coat (Goldberg, 2000; Majoul et al, 2001; Aoe et al, 1997; Kliouchnikov et al, 2009; Luo et al, 2009). Stimulation of ARF GTPase activity is coordinated with cargo recruitment to ensure that only cargo-loaded vesicles are produced (Goldberg, 2000; Luo et al, 2009).
Mammalian cells have 3 ARFGAPs that appear to be involved in COPI-mediated traffic, ARFGAP1,2 and 3 (Frigerio et al, 2007; Liu et al, 2001; Kahn et al, 2008). ARFGAP1 has a ALPS domain that recognizes membrane curvature and that is required for the GTPase stimulating activity of the protein, suggesting a mechanism for coordinating ARF1-mediated GTP hydrolysis with vesicle formation (Bigay et al, 2003; Mesmin et al, 2007). ARFGAP 2 and 3 do not contain this motif, and their activity is dependent upon interaction with coatomer (Weimar et al 2008; Kliouchnikov et al, 2009; Luo et al, 2009).
Identifier: R-HSA-6807875
Species: Homo sapiens
Compartment: endoplasmic reticulum-Golgi intermediate compartment membrane
Binding and polymerization of the coatomer (the COPI coat) is coordinated with the incorporation of cargo proteins and Golgi-targeting snares, as well as with recruitment of ARFGAP proteins (Letourneur et al, 1994; Nagahama et al,1996; Bremser et al, 1999).
Typical model cargo for COPI-mediated trafficking includes the viral glycoprotein VSV-G and proinsulin as well as the KDEL receptors, which bind and recycle ER-resident proteins and which themselves must be returned to post-ER compartments (Cosson and Letourner, 1994; Ben-Tekaya et al, 2005; Majoul et al, 2001; Orci et al, 1997, Bremser et al, 1999; Presley et al, 1997; reviewed in Beck et al, 2009).
Other protein components of the COPI vesicle include the p24 family of proteins, which serve diverse roles in the early secretory pathway (reviewed in Schuiki and Volchuk, 2012). Oligomeric p24 proteins interact with ADP-bound ARF and components of the COPI coat, contributing to coatomer recruitment and oligomerization (Gommel et al, 2001; Majoul et al, 2001; Bethune et al, 2006; Harter and Wieland, 1998; Langer et al, 2008; Reinhard et al, 1999). The p24 proteins also act as cargo receptors for various proteins destined for packaging in COPI vesicles; these include GPI-anchored transmembrane proteins, WNT ligands and some G-protein coupled receptors (Takida et al, 2008; Bonnon et al, 2010; Luo et al, 2011; Beuchling et al, 2011; Wang and Kazanietz, 2002; reviewed in Schuiki and Volchuk, 2012). Finally, the p24 proteins contribute to COPI coat disassembly by restricting ARF GTPase activity until cargo has been loaded (Goldberg, 2000; Lanoix et al, 2001).
ARFGAPs are recruited to the budding vesicle through direct interaction with active ARF, the cytoplasmic tails of cargo proteins and with components of the COPI coat (Goldberg, 2000; Majoul et al, 2001; Aoe et al, 1997; Kliouchnikov et al, 2009; Luo et al, 2009). Stimulation of ARF GTPase activity is coordinated with cargo recruitment to ensure that only cargo-loaded vesicles are produced (Goldberg, 2000; Luo et al, 2009).
Mammalian cells have 3 ARFGAPs that appear to be involved in COPI-mediated traffic, ARFGAP1,2 and 3 (Frigerio et al, 2007; Liu et al, 2001; Kahn et al, 2008). ARFGAP1 has a ALPS domain that recognizes membrane curvature and that is required for the GTPase stimulating activity of the protein, suggesting a mechanism for coordinating ARF1-mediated GTP hydrolysis with vesicle formation (Bigay et al, 2003; Mesmin et al, 2007). ARFGAP 2 and 3 do not contain this motif, and their activity is dependent upon interaction with coatomer (Weimar et al 2008; Kliouchnikov et al, 2009; Luo et al, 2009).
Finally, there is evidence that components of the ankyin/spectrin skeleton may be incorporated in the nascent COPI vesicle, acting as a bridge between cargo proteins and the dynein-dynactin complex required for their transport to the Golgi (Devarajan et al, 1997; Godi et al, 1998; Holleran et al, 1996; Holleran et al, 2001).
Identifier: R-HSA-9013145
Species: Homo sapiens
Compartment: plasma membrane, cytosol
In its GTP bound active form, plasma membrane associated RAC1 binds to the following cytosolic and plasma membrane effectors:
BAIAP2 (Lewis Saravalli et al. 2013, Bagci et al. 2020)
CAV1 (Nethe et al. 2010, Bagci et al. 2020)
CDC42BPA (Schwarz et al. 2012)
CIT (Madaule et al. 1995)
CIT 3 (Di Cunto et al. 1998)
CYFIP1 (Schneck et al. 2003, Bagci et al. 2020)
FMNL1 (Yayoshi Yamamoto et al. 2000)
IQGAP1 (Kuroda et al. 1996, Pelikan Conchaudron et al. 2011)
IQGAP2 (Brill et al. 1996, Ozdemir et al. 2018)
IQGAP3 (Wang et al. 2007)
KIAA0355 (Bagci et al. 2020: interaction studied in detail)
NISCH (Reddig et al. 2005)
NOX1 complex (Cheng et al. 2006, Miyano et al. 2006, Kao et al. 2008)
NOX2 complex (Price et al. 2002)
NOX3 complex (Ueyama et al. 2006, Miyano and Sumimoto 2007, Kao et al. 2008)
PAK1 (Parrini et al. 2002)
PAK2 (Manser et al. 1994, Manser et al. 1995, Bagci et al. 2020)
PAK3 (Manser et al. 1995)
PAK4 (Abo et al. 1998, Bagci et al. 2020)
PAK5 (Dan et al. 2002)
PAK6 (Lee et al. 2002)
PARD6A (Qiu et al. 2000)
PI3K alpha (Bokoch et at al. 1996, Murga et al. 2002)
PKN1 (Owen et al. 2003, Modha et al. 2008)
PKN2 (Zong et al. 1999)
PLD1 (Hammond et al. 1997)
PLD2 (Hiroyama and Exton 2005)
WAVE complex (Miki et al. 1998, Suetsugu et al. 2006, Bagci et al. 2020)

The following RAC1 effectors are annotated as candidate effectors either because of opposing finding reported in different studies or because they have only been reported in the high throughput screen by Bagci et al. 2020:
ABI1 (Bagci et al. 2020)
ABL2 (Bagci et al. 2020)
AMIGO2 (Bagci et al. 2020)
ARAP2 (Bagci et al. 2020)
BAIAP2L1 (Bagci et al. 2020)
BRK1 (Bagci et al. 2020)
CDC42 (Bagci et al. 2020)
CDC42EP1 (Bagci et al. 2020: binding to activated RAC1; Joberty et al. 1999: no binding to activated RAC1)
CDC42EP4 (Bagci et al. 2020: binding to activated RAC1; Joberty et al. 1999: no binding to activated RAC1)
DEPDC1B (Bagci et al. 2020)
DIAPH3 (Bagci et al. 2020)
EPHA2 (Bagci et al. 2020)
ERBIN (Bagci et al. 2020)
FERMT2 (Bagci et al. 2020)
GIT1 (Bagci et al. 2020)
GIT2 (Bagci et al. 2020)
ITGB1 (Bagci et al. 2020)
JAG1 (Bagci et al. 2020)
LAMTOR1 (Bagci et al. 2020)
MCAM (Bagci et al. 2020)
MPP7 (Bagci et al. 2020)
NCKAP1 (Bagci et al. 2020)
NHS (Bagci et al. 2020)
PLEKHG3 (Bagci et al. 2020)
PLEKHG4 (Bagci et al. 2020)
RAB7A (Bagci et al. 2020)
SLC1A5 (Bagci et al. 2020)
SNAP23 (Bagci et al. 2020)
SWAP70 (Bagci et al. 2020)
TAOK3 (Bagci et al. 2020)
TFRC (Bagci et al. 2020)
TMPO (Bagci et al. 2020)
VAMP3 (Bagci et al. 2020)
VANGL1 (Bagci et al. 2020)
WIP WASP complex (WAS, also known as WASP, a component of the WIP WASP complex, was reported to interact with active RAC1 by Aspenstrom et al. 1996 and Vastrik et al. 1999, but no interaction has been reported between RAC1 and WIP components of the complex, WIPF1, WIPF2 or WIPF3)

Active RAC1 does not bind the following RHO GTPase effectors:
ANKLE2 (Bagci et al. 2020)
ARFGAP3 (Bagci et al. 2020)
ARMCX3 (Bagci et al. 2020)
CDC42EP2 (Joberty et al. 1999)
CDC42EP3 (Joberty et al. 1999)
CDC42EP5 (Joberty et al. 1999)
DSG2 (Bagci et al. 2020)
DIAPH1 (Higashi et al. 2008)
DOCK1 (Bagci et al. 2020)
DOCK5 (Bagci et al. 2020)
ELMO2 (Bagci et al. 2020)
FMNL2 (Block et al. 2012)
HSPE1 (Bagci et al. 2020)
IL32 (Bagci et al. 2020)
LETM1 (Bagci et al. 2020)
LMAN1 (Bagci et al. 2020)
NDUFA5 (Bagci et al. 2020)
NDUFS3 (Bagci et al. 2020)
PGRMC2 (Bagci et al. 2020)
RAPGEF1 (Bagci et al. 2020)
ROCK1 (Leung et al. 1996)
ROCK2 (Leung et al. 1996)
RTKN (Reid et al. 1996)
SHMT2 (Bagci et al. 2020)
SLK (Yamada et al. 2000)
SLITRK3 (Bagci et al. 2020)
SLITRK5 (Bagci et al. 2020)
STBD1 (Bagci et al. 2020)
STX5 (Bagci et al. 2020)
VAPB (Bagci et al. 2020)
Identifier: R-HSA-1675883
Species: Homo sapiens
Compartment: Golgi membrane, cytosol
At the Golgi membrane, activated phosphatidylinositol 4-kinase beta (PI4KB) complexed to ADP-ribosylation factor 1/3 (ARF1/3) phosphorylates phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P) (Suzuki et al. 1997).
Identifier: R-HSA-350769
Species: Homo sapiens
Compartment: cytosol
ARF1 helps to recruit AP-1 to Golgi membrane. AP-1 is not alone in this process of establishing a docking complex at the trans-Golgi Network. This section of the Golgi membrane will be where the new vesicle will be built and loaded.
Identifier: R-HSA-9845055
Species: Homo sapiens
Compartment: Golgi membrane, plasma membrane
Dimeric pleckstrin homology domain-containing family A member 8 (PLEKHA8, FAPP2) controls the transfer of GlcCer from the cis-Golgi to the trans-Golgi membrane. PLEKHA8 transport depends on binding to phosphatidylinositol 4-phosphate (PtdIns4P) and the small GTPase ARF1 (Godi et al., 2004; Vieira et al., 2005; D'Angelo et al., 2007; reviewed by Yamaji & Hanada, 2015). PLEKHA8 complex also forms tubules from membrane sheets. GlcCer reaches the plasma membrane via non-vesicular transport from the trans-Golgi, i.e., using tubular structures (Cao et al. 2009).
Cite Us!