Search results for DNMT1

Showing 20 results out of 26

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (3 results from a total of 3)

Identifier: R-HSA-212181
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: DNMT1: P26358
Identifier: R-HSA-4655353
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: DNMT1: P26358
Identifier: R-HSA-4655358
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: P63165

Reaction (5 results from a total of 8)

Identifier: R-HSA-5334160
Species: Homo sapiens
Compartment: nucleoplasm
As inferred from the mouse homolog, UHRF1 associates with hemimethylated DNA and histone H3 tails methylated at lysine-9. UHRF1 recruits and tethers DNMT1 (Bostick et al. 2007). The association of UHRF1 with DNMT1 occurs preferentially during S-phase when DNA is hemimethylated as the newly replicated strand remains transiently unmethylated (Zhang et al. 2011, Hervouet et al. 2012). DNMT1 also forms complexes with transcription factors such as TP53 (p53) and YY1 at other times during the cell cycle (Hervouet et al. 2012).
Identifier: R-HSA-4655431
Species: Homo sapiens
Compartment: nucleoplasm
DNMT1 is SUMOyated at several unknown lysine residues with SUMO1 (Lee et al. 2009). SUMOylation increases the DNA methyltransferase activity of DNMT1.
Identifier: R-HSA-5334151
Species: Homo sapiens
Compartment: nucleoplasm
DNMT1 transfers a methyl group from S-adenosylmethionine to the 5-position of the cytosine ring of cytosine residues in DNA. Purified human DNMT1 shows a 7 to 21-fold preference for hemimethylated CG motifs in DNA compared to unmethylated CG motifs (Pradhan et al. 1999) thus DNMT1 tends to maintain existing methylation through DNA replication. The binding of the CXXC motif of DNMT1 to cytosine in symmetrically unmethylated CG dinucleotides prevents access of cytosine to the active site and thereby prevents de novo methylation (Song et al. 2011). UHRF1 binds hemimethylated DNA and histone H3 tails methylated at lysine-9 and recruits DNMT1 to methylate hemimethylated DNA (Bostick et al. 2007, reviewed in Ooi and Bestor 2008). Interaction of UHRF1 with DNMT1 increases the methylation activity of DNMT1 about 5-fold (Bashtrykov et al. 2014).
Identifier: R-HSA-212269
Species: Homo sapiens
Compartment: nucleoplasm
DNA methyltransferases (DNMTs) associate with EZH2 of the Polycomb Repressive Complex 2 (PRC2) and methylate the 5 position of the cytosine ring in DNA (Vire et al. 2006). The histone methyltransferase activity of EZH2 also trimethylates lysine-27 of histone H3 (H3K27me3). The promoters of the MYT, WNT1, KCNA1, and CNR1 genes are methylated on cytosine by the DNMT:PRC2 complex however not all loci that have H3K27me3 by PRC2 also have cytosine methylation (Vire et al. 2006, Brinkman et al. 2012). DNA methylation and H3K27me3 appear to be mutually exclusive in CpG islands but are compatible throughout most of the rest of the genome (Brinkman et al. 2012). In mouse, DNA methylation and H3K27me3 appear to be antagonistic at most loci: loss of DNA methylation causes increased H3K27me3 while loss of PRC2 has little effect on DNA methylation (Hagarman et al. 2013). By competing with DNMT3a,b for association with PRC2, DNMT3L may antagonize DNA methylation at sites bound by PRC2 (Neri et al. 2013).
Identifier: R-HSA-5227490
Species: Homo sapiens
Compartment: nucleoplasm
From research with human cells (Majumder et al. 2006, Espada et al. 2007) and inferences from mouse cell models, cytosine residues in the main promoter of silenced rRNA gene copiess are methylated by DNMT1 and DNMT3B. DNMT3B directly binds a triple helix formed by pRNA and the main promoter of rDNA. The methylated cytosines prevent binding of the UBF transcription factor, thus preventing transcription of silenced rRNA gene copies. Histone deacetylation is required for DNA methylation.

Complex (5 results from a total of 7)

Identifier: R-HSA-4655323
Species: Homo sapiens
Compartment: nucleoplasm
Identifier: R-HSA-212159
Species: Homo sapiens
Compartment: nucleoplasm
Identifier: R-HSA-5334113
Species: Homo sapiens
Compartment: nucleoplasm
Identifier: R-HSA-5334142
Species: Homo sapiens
Compartment: nucleoplasm
Identifier: R-HSA-5334177
Species: Homo sapiens
Compartment: nucleoplasm

Set (1 results from a total of 1)

Identifier: R-HSA-212315
Species: Homo sapiens
Compartment: nucleoplasm

Pathway (5 results from a total of 6)

Identifier: R-HSA-4655427
Species: Homo sapiens
Compartment: nucleoplasm
The known DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) can be SUMOylated (reviewed in Xu et al. 2010, Denis et al. 2011). SUMOylation affects the catalytic activity of DNMT1 and the protein interactions of DNMT3A.
Identifier: R-HSA-8986944
Species: Homo sapiens
MECP2 is an X chromosome gene whose loss-of-function mutations are an underlying cause of the majority of Rett syndrome cases. The MECP2 gene locus consists of four exons. Both exon 1 and exon 2 contain translation start sites. Alternative splicing of the second exon results in expression of two MECP2 transcript isoforms, MECP2_e1 (MECP2B or MECP2alpha) and MECP2_e2 (MECP2A or MECP2beta). The N-terminus of the MECP2_e1 isoform, in which exon 2 is spliced out, is encoded by exon 1. The N-terminus of the MECP2_e2 isoforms, which includes both exon 1 and exon 2, is encoded by exon 2, as the exon 2 translation start site is used. Exons 3 and 4 are present in both isoforms. The MECP2_e2 isoform was cloned first and is therefore more extensively studied. The MECP2_e1 isoform is more abundant in the brain (Mnatzakanian et al. 2004, Kriaucionis and Bird 2004, Kaddoum et al. 2013). Mecp2 isoforms show different expression patterns during mouse brain development and in adult brain regions (Dragich et al. 2007, Olson et al. 2014). While Rett syndrome mutations mainly occur in exons 3 and 4 of MECP2, thereby affecting both MECP2 isoforms (Mnatzakanian et al. 2004), some mutations occur in exon 1, affecting MECP2_e1 only. No mutations have been described in exon 2 (Gianakopoulos et al. 2012). Knockout of Mecp2_e1 isoform in mice, through a naturally occurring Rett syndrome point mutation which affects the first translation codon of MECP2_e1, recapitulates Rett-like phenotype. Knockout of Mecp2_e2 isoform in mice does not result in impairment of neurologic functions (Yasui et al. 2014). In Mecp2 null mice, transgenic expression of either Mecp2_e1 or Mecp2_e2 prevents development of Rett-like phenotype, with Mecp2_e1 rescuing more Rett-like symptoms than Mecp2_e2. This indicates that both splice variants can fulfill basic Mecp2 functions in the mouse brain (Kerr et al. 2012). Changes in gene expression upon over-expression of either MECP2_e1 or MECP2_e2 imply overlapping as well as distinct target genes (Orlic-Milacic et al. 2014).

Methyl-CpG-binding protein 2 encoded by the MECP2 gene binds to methylated CpG sequences in the DNA. The binding is not generic, however, but is affected by the underlying DNA sequence (Yoon et al. 2003). MECP2 binds to DNA containing 5 methylcytosine (5mC DNA), a DNA modification associated with transcriptional repression (Mellen et al. 2012), both in the context of CpG islands and outside of CpG islands (Chen et al. 2015). In addition, MECP2 binds to DNA containing 5 hydroxymethylcytosine (5hmC DNA), a DNA modification associated with transcriptional activation (Mellen et al. 2012). MECP2 binds to DNA as a monomer, occupying about 11 bp of the DNA. Binding of one MECP2 molecule facilitates binding of the second MECP2 molecule, and therefore clustering can occur at target sites. MECP2 binding to chromatin may be facilitated by nucleosome methylation (Ghosh et al. 2010).

MECP2 was initially proposed to act as a generic repressor of gene transcription. However, high throughput studies of MECP2-induced changes in gene expression in mouse hippocampus (Chahrour et al. 2008), and mouse and human cell lines (Orlic-Milacic et al. 2014) indicate that more genes are up-regulated than down-regulated when MECP2 is overexpressed. At least for some genes directly upregulated by MECP2, it was shown that a complex of MECP2 and CREB1 was involved in transcriptional stimulation (Chahrour et al. 2008, Chen et al. 2013).

MECP2 expression is the highest in postmitotic neurons compared to other cell types, with MECP2 being almost as abundant as core histones. Phosphorylation of MECP2 in response to neuronal activity regulates binding of MECP2 to DNA, suggesting that MECP2 may remodel chromatin in a neuronal activity-dependent manner. The resulting changes in gene expression would then modulate synaptic plasticity and behavior (reviewed by Ebert and Greenberg 2013). In human embryonic stem cell derived Rett syndrome neurons, loss of MECP2 is associated with a significant reduction in transcription of neuronally active genes, as well as the reduction in nascent protein synthesis. The reduction in nascent protein synthesis can at least in part be attributed to the decreased activity of the PI3K/AKT/mTOR signaling pathway. Neuronal morphology (reduced soma size) and the level of protein synthesis in Rett neurons can be ameliorated by treating the cells with growth factors which activate the PI3K/AKT/mTOR cascade or by inhibition of PTEN, the negative regulator of AKT activation. Mitochondrial gene expression is also downregulated in Rett neurons, which is associated with a reduced capacity of the mitochondrial electron transport chain (Ricciardi et al. 2011, Li et al. 2013). Treatment of Mecp2 null mice with IGF1 (insulin-like growth factor 1) reverses or ameliorates some Rett-like features such as locomotion, respiratory difficulties and irregular heart rate (Tropea et al. 2009).

MECP2 regulates expression of a number of ligands and receptors involved in neuronal development and function. Ligands regulated by MECP2 include BDNF (reviewed by Li and Pozzo-Miller 2014, and KhorshidAhmad et al. 2016), CRH (McGill et al. 2006, Samaco et al. 2012), SST (Somatostatin) (Chahrour et al. 2008), and DLL1 (Li et al. 2014). MECP2 also regulates transcription of genes involved in the synthesis of the neurotransmitter GABA – GAD1 (Chao et al. 2010) and GAD2 (Chao et al. 2010, He et al. 2014). MECP2 may be involved in direct stimulation of transcription from the GLUD1 gene promoter, encoding mitochondrial glutamate dehydrogenase 1, which may be involved in the turnover of the neurotransmitter glutamate (Livide et al. 2015). Receptors regulated by MECP2 include glutamate receptor GRIA2 (Qiu et al. 2012), NMDA receptor subunits GRIN2A (Durand et al. 2012) and GRIN2B (Lee et al. 2008), opioid receptors OPRK1 (Chahrour et al. 2008) and OPRM1 (Hwang et al. 2009, Hwang et al. 2010, Samaco et al. 2012), GPRIN1 (Chahrour et al. 2008), MET (Plummer et al. 2013), NOTCH1 (Li et al. 2014). Channels/transporters regulated by MECP2 include TRPC3 (Li et al. 2012) and SLC2A3 (Chen et al. 2013). MECP2 regulates transcription of FKBP5, involved in trafficking of glucocorticoid receptors (Nuber et al. 2005, Urdinguio et al. 2008). MECP2 is implicated in regulation of expression of SEMA3F (semaphorin 3F) in mouse olfactory neurons (Degano et al. 2009). In zebrafish, Mecp2 is implicated in sensory axon guidance by direct stimulation of transcription of Sema5b and Robo2 (Leong et al. 2015). MECP2 may indirectly regulate signaling by neuronal receptor tyrosine kinases by regulating transcription of protein tyrosine phosphatases, PTPN1 (Krishnan et al. 2015) and PTPN4 (Williamson et al. 2015).

MECP2 regulates transcription of several transcription factors involved in functioning of the nervous system, such as CREB1, MEF2C, RBFOX1 (Chahrour et al. 2008) and PPARG (Mann et al. 2010, Joss-Moore et al. 2011).

MECP2 associates with transcription and chromatin remodeling factors, such as CREB1 (Chahrour et al. 2008, Chen et al. 2013), the HDAC1/2-containing SIN3A co-repressor complex (Nan et al. 1998), and the NCoR/SMRT complex (Lyst et al. 2013, Ebert et al. 2013). There are contradictory reports on the interaction of MECP2 with the SWI/SNF chromatin-remodeling complex (Harikrishnan et al. 2005, Hu et al. 2006). Interaction of MECP2 with the DNA methyltransferase DNMT1 has been reported, with a concomitant increase in enzymatic activity of DNMT1 (Kimura and Shiota 2003).

In addition to DNA binding-dependent regulation of gene expression by MECP2, MECP2 may influence gene expression by interaction with components of the DROSHA microprocessor complex and the consequent change in the levels of mature microRNAs (Cheng et al. 2014, Tsujimura et al. 2015).

Increased MECP2 promoter methylation is observed in both male and female autism patients (Nagarajan et al. 2008). Regulatory elements that undergo methylation are found in the promoter and the first intron of MECP2 and their methylation was shown to regulate Mecp2 expression in mice (Liyanage et al. 2013). Mouse Mecp2 promoter methylation was shown to be affected by stress (Franklin et al. 2010).

The Rett-like phenotype of Mecp2 null mice is reversible (Guy et al. 2007), but appropriate levels of Mecp2 expression need to be achieved (Alvarez-Saavedra et al. 2007). When Mecp2 expression is restored in astrocytes of Mecp2 null mice, amelioration of Rett symptoms occurs, involving non-cell-autonomous positive effect on mutant neurons and increasing level of the excitatory glutamate transporter VGLUT1 (Lioy et al. 2011). Microglia derived from Mecp2 null mice releases higher than normal levels of glutamate, which has toxic effect on neurons. Increased glutamate secretion may be due to increased levels of glutaminase (Gls), involved in glutamate synthesis, and increased levels of connexin-32 (Gjb1), involved in glutamate release, in Mecp2 null microglia (Maezawa and Jin 2010). Targeted deletion of Mecp2 from Sim1-expressing neurons of the mouse hypothalamus recapitulates some Rett syndrome-like features and highlights the role of Mecp2 in feeding behavior and response to stress (Fyffe et al. 2008).

Mecp2 overexpression, similar to MECP2 duplication syndrome, causes neurologic phenotype similar to Rett (Collins et al. 2004, Luikenhuis et al. 2004, Van Esch et al. 2005, Alvarez-Saavedra 2007, Van Esch et al. 2012). The phenotype of the mouse model of the MECP2 duplication syndrome in adult mice is reversible when Mecp2 expression levels are corrected (Sztainberg et al. 2015).

Identifier: R-HSA-427413
Species: Homo sapiens
Compartment: nucleoplasm
The Nucleolar Remodeling Complex (NoRC) comprising TIP5 (BAZ2A) and the chromatin remodeller SNF2H (SMARCA5) silences rRNA gene (reviewed in Santoro and Grummt 2001, Grummt 2007, Preuss and Pikaard 2007, Birch and Zommerdijk 2008, McStay and Grummt 2008, Grummt and Langst 2013). The TAM domain of TIP5 (BAZ2A) binds promoter-associated RNA (pRNA) transcribed from the intergenic spacer region of rDNA. The pRNA bound by TIP5 is required to direct the complex to the main promoter of the rRNA gene possibly by triple helix formation between pRNA and the rDNA. The PHD domain of TIP5 binds histone H4 acetylated at lysine-16. Transcription Termination Factor-I (TTF-I) binds to a promoter-proximal terminator (T0 site) in the rDNA and interacts with the TIP5 subunit of NoRC. NoRC also interacts with the SIN3-HDAC complex, HDAC1, HDAC2, DNMT1, and DNMT3B. DNMT3B interacts with a triple helix formed by pRNA and the rDNA. HDAC1, DNMT1, and DNMT3B have been shown to be required for proper DNA methylation of silenced rRNA gene copies, although the catalytic activity of DNMT3B was not required.
Identifier: R-HSA-5250941
Species: Homo sapiens
Compartment: nucleoplasm
Transcription of rRNA genes is controlled by epigenetic activation and repression (reviewed in McStay and Grummt 2008, Goodfellow and Zomerdijk 2012, Grummt and Langst 2013). About half of the roughly 400 rRNA genes are expressed and these have the modifications of active chromatin: unmethylated DNA and acetylated histones. Repressed genes generally have methylated DNA and histone H3 methylated at lysine-9. Regulators of repression include the eNoSC complex, SIRT1, and the NoRC complex.
SIRT1 negatively regulates rRNA expression as a subunit of the eNoSC complex, which deacetylates histone H3 and dimethylates lysine-9 of histone H3 (H3K9me2).
NoRC negatively regulates rRNA expression by shifting a nucleosome near the start of rRNA transcription into a more repressive location and recruiting Histone Deacetylase 1 and 2 (HDAC1, HDAC2) and DNA Methyltransferase 1 and 3b (DNMT1, DNMT3b).
Identifier: R-HSA-5334118
Species: Homo sapiens
Compartment: nucleoplasm
Methylation of cytosine is catalyzed by a family of DNA methyltransferases (DNMTs): DNMT1, DNMT3A, and DNMT3B transfer methyl groups from S-adenosylmethionine to cytosine, producing 5-methylcytosine and homocysteine (reviewed in Klose and Bird 2006, Ooi et al. 2009, Jurkowska et al. 2011, Moore et al. 2013). (DNMT2 appears to methylate RNA rather than DNA.) DNMT1, the first enzyme discovered, preferentially methylates hemimethylated CG motifs that are produced by replication (template strand methylated, synthesized strand unmethylated). Thus it maintains existing methylation through cell division. DNMT3A and DNMT3B catalyze de novo methylation at unmethylated sites that include both CG dinucleotides and non-CG motifs.
DNA from adult humans contains about 0.76 to 1.00 mole percent 5-methylcytosine (Ehrlich et al. 1982, reviewed in Klose and Bird 2006, Ooi et al. 2009, Moore et al. 2013). Methylation of DNA occurs at cytosines that are mainly located in CG dinucleotides. CG dinucleotides are unevenly distributed in the genome. Promoter regions tend to have a high CG-content, forming so-called CG-islands (CGIs), while the CG-content in the remaining part of the genome is much lower. CGIs tend to be unmethylated, while the majority of CGs outside CGIs are methylated. Methylation in promoters and first exons tends to repress transcription while methylation in gene bodies (regions of genes downstream of the promoter and first exon) correlates with transcription (reviewed in Ehrlich and Lacey 2013, Kulis et al. 2013). Proteins such as MeCP2 and MBDs specifically bind 5-methylcytosine and may recruit other factors.
Mammalian development has two major episodes of genome-wide demethylation and remethylation (reviewed in Zhou 2012, Guibert and Weber 2013, Hackett and Surani 2013, Dean 2014). In mice about 1 day after fertilization the paternal genome is actively demethylated by TET proteins together with thymine DNA glycosylase and the maternal genome is demethylated by passive dilution during replication, however methylation at imprinted sites is maintained. The genome has its lowest methylation level about 3.5 days post-fertilization. Remethylation occurs by 6.5 days post-fertilization. The second demethylation-remethylation event occurs in primordial germ cells of the developing embryo about 12.5 days post-fertilization. DNMT3A and DNMT3B, together with the non-catalytic DNMT3L, play major roles in the remethylation events (reviewed in Chen and Chan 2014). How the methyltransferases are directed to particular regions of the genome remains an area of active research. The mechanisms at each locus may differ in detail but a connection between histone modifications and DNA methylation has been observed (reviewed in Rose and Klose 2014).

Icon (1 results from a total of 1)

Species: Homo sapiens
Curator: Bruce May
Designer: Cristoffer Sevilla
DNMT1,3A,3B icon
Set of DNA (cytosine-5)-methyltransferase 1, 3A and 3B
Cite Us!