Search results for ETV4

Showing 8 results out of 8

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (1 results from a total of 1)

Identifier: R-HSA-5687030
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: ETV4: P43268

Interactor (1 results from a total of 1)

Identifier: P43268-3
Species: Homo sapiens
Primary external reference: UniProt: P43268-3

Reaction (3 results from a total of 3)

Identifier: R-HSA-5687097
Species: Homo sapiens
Compartment: nucleoplasm
NCOA3 interacts with ETV4 (also known as PEA3) in a manner that depends on S857 phosphorylation (Long et al, 2012). ETV4 and NCOA3 coactivate expression of a number of MMP genes, which play roles in cell motility and invasiveness in a subset of lung carcinomas (Long et al, 2012; Qin et al, 2008; Yan et al, 2008).
Identifier: R-HSA-5687099
Species: Homo sapiens
Compartment: nucleoplasm
MAPK6-dependent phosphorylation of NCOA3 S857 promotes its interaction with the transcription factor ETV4 and increases the occupancy at promoters of the MMP2 and 10 genes in vivo as assessed by ChIP (Long et al, 2012; Qin et al, 2008; Yan et al, 2008). MMP gene expression is associated with invasiveness in lung and breast cancer, and MAPK6 is highly expressed in a subset of human lung carcinomas (Long et al, 2012; Qin et al, 2008; Yan et al, 2008; Li et al, 2008; reviewed in Kostenko et al, 2012).
Identifier: R-HSA-5687090
Species: Homo sapiens
Compartment: nucleoplasm
MAPK6 is proposed to phosphorylate NCOA3 at serine 857. This phosphorylation is required for NCOA3 to interact with the transcription factor ETV4 (also known as PEA3). Together, ETV4 and NCOA3 bind to the promoters and regulate the expression of metalloprotease genes such as MMP2 and MMP10 and in this way contribute to cell motility and invasiveness in lung cancer (Long et al, 2012; Qin et al, 2008; Yan et al, 2008; Li et al, 2008; reviewed in Kostenko et al, 2012).

Complex (2 results from a total of 2)

Identifier: R-HSA-5687056
Species: Homo sapiens
Compartment: nucleoplasm
Identifier: R-HSA-5687057
Species: Homo sapiens
Compartment: nucleoplasm

Pathway (1 results from a total of 1)

Identifier: R-HSA-5687128
Species: Homo sapiens
MAPK6 and MAPK4 (also known as ERK3 and ERK4) are vertebrate-specific atypical MAP kinases. Atypical MAPK are less well characterized than their conventional counterparts, and are generally classified as such based on their lack of activation by MAPKK family members. Unlike the conventional MAPK proteins, which contain a Thr-X-Tyr motif in the activation loop, MAPK6 and 4 have a single Ser-Glu-Gly phospho-acceptor motif (reviewed in Coulombe and Meloche, 2007; Cargnello et al, 2011). MAPK6 is also distinct in being an unstable kinase, whose turnover is mediated by ubiquitin-dependent degradation (Coulombe et al, 2003; Coulombe et al, 2004). The biological functions and pathways governing MAPK6 and 4 are not well established. MAPK6 and 4 are phosphorylated downstream of class I p21 activated kinases (PAKs) in a RAC- or CDC42-dependent manner (Deleris et al, 2008; Perander et al, 2008; Deleris et al, 2011; De La Mota-Peynado et al, 2011). One of the only well established substrates of MAPK6 and 4 is MAPKAPK5, which contributes to cell motility by promoting the HSBP1-dependent rearrangement of F-actin (Gerits et al, 2007; Kostenko et al, 2009a; reviewed in Kostenko et al, 2011b). The atypical MAPKs also contribute to cell motility and invasiveness through the NCOA3:ETV4-dependent regulation of MMP gene expression (Long et al, 2012; Yan et al, 2008; Qin et al, 2008). Both of these pathways may be misregulated in human cancers (reviewed in Myant and Sansom, 2011; Kostenko et al, 2012)
Cite Us!