Search results for GANAB

Showing 3 results out of 3

×

Species

Types

Compartments

Search properties

Species

Types

Compartments

Search properties

Protein (1 results from a total of 1)

Identifier: R-HSA-532674
Species: Homo sapiens
Compartment: endoplasmic reticulum lumen
Primary external reference: UniProt: GANAB: Q14697

Reaction (2 results from a total of 2)

Identifier: R-HSA-532667
Species: Homo sapiens
Compartment: endoplasmic reticulum lumen, endoplasmic reticulum membrane
A second glucose is removed from the N-linked glycan. The removal of an alpha1,3 glucose moiety is catalyzed by glucosidase II, a complex composed of an alpha subunit (GANAB) with catalytic activity and a beta subunit (GLU2B; PRKCSH), probably with regulatory and recruitment function (Pelletier MF et al, 2000). GANAB can exist in two different isoforms, but both are able to catalyze both of the reactions catalyzed by glucosidase II (Pelletier MF et al, 2000). Defects in PRKCSH are a cause of polycystic liver disease (PCLD).
Identifier: R-HSA-964759
Species: Homo sapiens
Compartment: Golgi lumen, Golgi membrane
Cells exposed to castanospermine or 1-deoxynojirimycin (inhibitors of the glucosidase enzymes GCS1 and GANAB), are still able to carry out glycosylation and produce complex glycans. This is due to the existence of an alternative route catalyzed by the enzyme endomannosidase (Moore and Spiro, 1990).
Glycoproteins that pass through this route probably skip or have a reduced interaction with the Calnexin/Calreticulin cycle, and are transported to the cis-golgi through a route that has not been described yet (probably through the general ER to Golgi flow). Here, the Endomannosidase enzyme, which resides on the Golgi membrane (Hardt et al 2005; Hamilton et al 2005) is able to remove the tri-, di-, or mono-glucose substituted mannose on branch A, leading to a deglucosylated N-glycan structure (Lubas and Spiro, 1988).
Cite Us!