Search results for GNA11

Showing 7 results out of 7

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (1 results from a total of 1)

Identifier: R-HSA-167446
Species: Homo sapiens
Compartment: plasma membrane
Primary external reference: UniProt: GNA11: P29992

Reaction (6 results from a total of 6)

Identifier: R-HSA-8964284
Species: Homo sapiens
Compartment: plasma membrane
G-Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the Guanine nucleotide-binding protein G(q) subunit alpha class (GNAQ/GNA11/GNA14/GNA15) can bind directly to the non-receptor Tyrosine-protein kinase BTK. This binding breaks intramolecular interactions in BTK thereby making the kinase domain available for substrates. Physiologically, BTK plays a key role in B lymphocyte development, differentiation and signalling.
Identifier: R-HSA-8964280
Species: Homo sapiens
Compartment: cytosol, plasma membrane
G-Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the Guanine nucleotide-binding protein G(q) subunit alpha class (GNAQ/GNA11/GNA14/GNA15) can bind directly to the THSH3 domain of the non-receptor Tyrosine-protein kinase BTK in vitro and in vivo. This binding results in a conformational change in BTK, which leads to its activation. Physiologically, BTK plays a key role in B lymphocyte development, differentiation and signalling.
Identifier: R-HSA-8964340
Species: Homo sapiens
Compartment: cytosol
G-Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the Guanine nucleotide-binding protein G(q) subunit alpha class (GNAQ/GNA11/GNA14/GNA15) can bind to the non-receptor Tyrosine-protein kinase BTK. This binding results in a conformational change in BTK. Subsequently, the structurally modified BTK is released from GNAQ and is now catalytically active. Active BTK can trigger the downstream MAPK p38 pathway. Physiologically, BTK plays a key role in B lymphocyte development, differentiation and signalling.
Identifier: R-HSA-8982017
Species: Homo sapiens
Compartment: plasma membrane, cytosol
G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) are GTPase Accelerating Proteins (GAPs) that can directly inhibit the G alpha subunit activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 2, 3, 4, 5, 8, 13, 16, 17, 18, 19, 21) can bind and stabilize the transition state for GTP hydrolysis of Guanine nucleotide binding protein G(q) subunit alpha class (GNAQ/GNA11/GNA14/GNA15). Subsequently, this leads to GTP hydrolysis and inactivation of G alpha (q) and terminating downstream signalling (Neubig RR and Siderovski DP et al. 2002, Kach J et al., 2012). The primary function of G alpha (q) is activation of phospholipase C beta thereby triggering phosphoinositide hydrolysis, calcium mobilization and protein kinase C activation.
Identifier: R-HSA-8982026
Species: Homo sapiens
Compartment: plasma membrane
G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) are GTPase Accelerating Proteins (GAPs) that can directly inhibit the G alpha subunit activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 2, 3, 4, 5, 8, 13, 16, 17, 18, 19, 21) can bind and stabilize the transition state of Guanine nucleotide binding protein G(q) subunit alpha class (GNAQ/GNA11/GNA14/GNA15). Subsequently, the RGS domain in the complex facilitates the hydrolyses of G alpha (q):GTP to G alpha (q):GDP. Following this, the complex dissociates releasing inactive G alpha (q) (Neubig & Siderovski 2002, Kach et al. 2012). The primary function of G alpha (q) is activation of phospholipase C beta thereby triggering phosphoinositide hydrolysis, calcium mobilization and protein kinase C activation.
Identifier: R-HSA-8982025
Species: Homo sapiens
Compartment: plasma membrane, cytosol
G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) are GTPase Accelerating Proteins (GAPs) that can directly inhibit the G alpha subunit activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 2, 3, 4, 5, 8, 13, 16, 17, 18, 19, 21) can bind and stabilize the transition state of Guanine nucleotide binding protein G(q) subunit alpha class (GNAQ/GNA11/GNA14/GNA15). Following this, the RGS domain of the proteins exert GAP activity on G alpha (q) and allosterically modulate residues within G-alpha subunit to accelerate the intrinsic GTPase activity that hydrolyses GTP to GDP. This inactivates G alpha (q) and terminates downstream signalling (Neubig & Siderovski 2002, Kach et al. 2012). The primary function of G alpha (q) is activation of phospholipase C beta thereby triggering phosphoinositide hydrolysis, calcium mobilization and protein kinase C activation.
Cite Us!