Search results for HP

Showing 28 results out of 338

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (4 results from a total of 23)

HP

Identifier: R-HSA-6799622
Species: Homo sapiens
Compartment: specific granule lumen
Primary external reference: UniProt: HP: P00738

HP

Identifier: R-HSA-6799677
Species: Homo sapiens
Compartment: extracellular region
Primary external reference: UniProt: HP: P00738

HP

Identifier: R-HSA-6800879
Species: Homo sapiens
Compartment: tertiary granule lumen
Primary external reference: UniProt: HP: P00738
Identifier: R-HSA-2168848
Species: Homo sapiens
Compartment: extracellular region
Primary external reference: UniProt: HP: P00738

Complex (4 results from a total of 46)

Identifier: R-HSA-163929
Species: Homo sapiens
Compartment: mitochondrial inner membrane
Identifier: R-HSA-450159
Species: Homo sapiens
Compartment: cytosol
Identifier: R-HSA-937036
Species: Homo sapiens
Compartment: plasma membrane
The listed studies describe an activation of IRAK-TRAF6-TAK1 axes downstream of IL1 receptor signaling cascade, which is mediated by its cytosolic domain called Toll/IL1R (TIR) domain. TLRs and IL1R are thought to share a similar downstream signaling pathway due to a high homology of their C-terminal TIR domains.
Identifier: R-HSA-975150
Species: Homo sapiens
Compartment: endosome membrane

Reaction (4 results from a total of 221)

Identifier: R-HSA-6799178
Species: Homo sapiens
Compartment: mitochondrial inner membrane
The hydrophobic protein fraction (HP) is assembled with NDUFA3, 8, 9 and 13 amongst many others and anchored to the inner mitochondrial membrane by Intermediate 1 assembly factors NDUFAF3 (C3orf60), NDUFAF4 (C6orf66) and TIMMDC1 (C3orf1) to form Intermediate 2 (Mckenzie & Ryan 2010, Andrews et al. 2013).
Identifier: R-HSA-450690
Species: Homo sapiens
Compartment: cytosol
IRAK1 and 4 interact with Pellino-1 (Jiang et al. 2003), 2 (Strellow et al. 2003) and 3 (Butler et al. 2005, 2007). Pellinos may act as scaffolding proteins, bringing signaling complexes into proximity. They are E3 ubiquitin ligases capable of ubiquitinating IRAK1, believed to mediate IL-1-stimulated formation of K63-polyubiquitinated IRAK1 in cells.

Though not clearly demonstrated and therefore not shown here, the current models of IRAK1 involvement suggest it would be within a complex including TRAF6.
Identifier: R-HSA-450827
Species: Homo sapiens
Compartment: cytosol
IRAK1 and 4 can phosphorylate Pellino-1 and -2 and probably -3. Phosphorylation enhances the E3 ligase activity of Pellino-1 in conjunction with several different E2-conjugating enzymes (Ubc13-Uev1a, UbcH4, or UbcH5a/5b). Phosphorylation at any of several different sites or a combination of other sites leads to full activation of Pellino-1 E3 ubiquitin ligase activity.

Though not shown here, the current models of IRAK1 involvement suggest it is part of a complex that includes TRAF6.
Identifier: R-HSA-166363
Species: Homo sapiens
Compartment: plasma membrane, cytosol
Hyperphosphorylated IRAK1, still within the receptor complex, binds TRAF6 through multiple regions including the death domain, the undefined domain and the C-terminal C1 domain (Li et al. 2001). The C-terminal region of IRAK-1 contains three potential TRAF6-binding sites; mutation of the amino acids (Glu544, Glu587, Glu706) in these sites to alanine greatly reduces activation of NFkappaB (Ye et al. 2002).

Set (4 results from a total of 6)

Identifier: R-HSA-1017213
Species: Homo sapiens
Compartment: plasma membrane
Identifier: R-HSA-1014260
Species: Homo sapiens
Compartment: endosome membrane
Identifier: R-HSA-937058
Species: Homo sapiens
Compartment: plasma membrane
Identifier: R-HSA-451413
Species: Homo sapiens
Compartment: cytosol

Chemical Compound (4 results from a total of 11)

Identifier: R-ALL-9025012
Compartment: cytosol
Identifier: R-ALL-9024522
Compartment: cytosol
Identifier: R-ALL-9024012
Compartment: cytosol
Identifier: R-ALL-9026047
Compartment: cytosol

Pathway (4 results from a total of 27)

Identifier: R-HSA-6807878
Species: Homo sapiens
The ERGIC (ER-to-Golgi intermediate compartment, also known as vesicular-tubular clusters, VTCs) is a stable, biochemically distinct compartment located adjacent to ER exit sites (Ben-Tekaya et al, 2005; reviewed in Szul and Sztul, 2011). The ERGIC concentrates COPII-derived cargo from the ER for further anterograde transport to the cis-Golgi and also recycles resident ER proteins back to the ER through retrograde traffic. Both of these pathways appear to make use of microtubule-directed COPI-coated vesicles (Pepperkok et al, 1993; Presley et al, 1997; Scales et al, 1997; Stephens and Pepperkok, 2002; Stephens et al, 2000; reviewed in Lord et al, 2001; Spang et al, 2013).
Identifier: R-HSA-9759475
Species: Homo sapiens
CDH11 gene encodes Cadherin-11, also known as osteoblast cadherin (OB-cadherin). The CDH11 gene maps to chromosome 16, chromosomal band 16q22, which is a subject to recurrent genomic loss in some types of cancer. The CDH11 gene consists of 14 exons, which are known to encode two splicing isoforms. Both splicing isoforms are expressed in the heart, brain, placenta, lung and bone, but not in the kidney, skeletal muscle, pancreas and liver (Okazaki et al. 1994; Kawaguchi et al. 1999). Several transcription factors have been shown to directly regulate CDH11 gene transcription, including HOXC8 (Lei et al. 2005; Lei et al. 2006; Li et al. 2014), ILF3 (Zhang et al. 2017), ZEB2 (Nam et al. 2012; Nam et al. 2014), HEYL (Liu et al. 2020), FOXF1 (Black et al. 2018), and BHLHE22 (Ross et al. 2012), and the transcription of CDH11 has also been shown to be influenced by a number of growth factors and hormones, such as FGF2 (Strutz et al. 2002; James et al. 2008), TNF (Wu et al. 2013), TGFB1 (Schneider et al. 2012; Schulte et al. 2013; Hahn et al. 2016; Cheng et al. 2018; Ruan et al. 2019; Doolin et al. 2021; Wilson et al. 2022), TGFB2 (Wecker et al. 2013; Theodossiou et al. 2019), GNRH1 (Peng et al. 2015), PTH (Yao et al. 2014), dexamethasone (Lecanda et al. 2000), and progesterone (Chen et al. 1999). CDH11 can also affect TGFB1 signaling, thereby possibly creating a feedback loop (Passanha et al. 2022). Expression of mouse Cdh11 in mouse osteoblast-like cell line (MC3T3-E1) is not affected by osteogenic hormones triiodothyronine (T3) and 1,25-dihydroxyvitamin D3 at either mRNA or protein levels (Leugmayr et al. 2000). CDH11 mRNA has been identified as the target of several microRNAs, such as miR-200c-3p (Luo et al. 2013; Van der Goten et al. 2014) and miR-451a (Yamada et al. 2018; Wang et al. 2020; Wang et al. 2021).

Like other classical cadherins, CDH11 associates with several catenin proteins through its intracellular domain, which is thought to play a role in the establishment and regulation of adherens junctions: CTNND1 (also known as p120 catenin or delta-catenin), CTNNB1 (beta-catenin), JUP (Junction Plakoglobin, also known as gamma-catenin), and CTNNA1 (alpha-catenin) (Straub et al. 2003; Kiener et al. 2006; Ortiz et al. 2015; Lee et al. 2018).

CDH11, through its C-terminus, also forms a complex with angiomotin (AMOT) isoform p80 (AMOT-2), which is implicated in CDH11-mediated cell migration and tumor cell invasiveness (Levchenko et al. 2004; Jiang et al. 2006; Yi et al. 2011; Oritz et al. 2015; Lee et al. 2018).

Through its extracellular region, CDH11 binds to the C-terminal fragment of ANGPTL4 (Angiopoietin-like-4), commonly known as cANGPTL4, which is implicated in the regulation of wound healing. The variant isoform of CDH11 (CDH11v), an 85 kDa membrane-bound fragment produced as a consequence of alternative splicing (Kawaguchi et al. 1999), can compete with the canonical CDH11 for cANGPTL4 binding, leading to diminished CTNNB1 release (Teo et al. 2017).

During normal development, CDH11 is implicated as a regulator of stem cell fate decisions, especially in mesodermal cell lineages (reviewed in Alimperti and Andreadis 2015), being particularly important for skeleton formation (reviewed in Marie et al. 2014).

Besides cancer (reviewed in Blaschuk and Devemy 2009, Niit et al. 2015, Chen et al. 2021), CDH11 has been implicated in several other diseases, such as rheumatoid arthritis (reviewed in Chang et al. 2010, Dou et al. 2013, Sfikakis et al. 2017, Senolt et al. 2019, Nygaard and Firestein 2020), fibrosis (reviewed in Agarwal 2014), cardiovascular diseases (reviewed in Boda-Heggemann et al. 2009, Huynh 2017, Du et al. 2021), and neuropsychiatric disorders (reviewed in Redies et al. 2012).
Identifier: R-HSA-9762292
Species: Homo sapiens
Like other classical cadherins, CDH11 associates with several catenin proteins through its intracellular domain, which is thought to play a role in the establishment and regulation of adherens junctions. These catenin proteins include CTNND1 (also known as p120 catenin or delta-catenin), CTNNB1 (beta-catenin), JUP (Junction Plakoglobin, also known as gamma-catenin), and CTNNA1 (alpha-catenin) (Straub et al. 2003; Kiener et al. 2006; Ortiz et al. 2015; Lee et al. 2018).

CDH11, through its C terminus, also forms a complex with angiomotin (AMOT) isoform p80 (AMOT-2), which is implicated in CDH11-mediated cell migration and tumor cell invasiveness (Levchenko et al. 2004; Jiang et al. 2006; Yi et al. 2011; Ortiz et al. 2015; Lee et al. 2018).

Through its extracellular region, CDH11 binds to the C terminal fragment of ANGPTL4 (Angiopoietin-like-4), commonly known as cANGPTL4, which is implicated in the regulation of wound healing. The variant isoform of CDH11 (CDH11v), an 85 kDa membrane-bound protein produced as a result of alternative splicing (Kawaguchi et al. 1999), can compete with the canonical CDH11 for cANGPTL4 binding (Teo et al. 2017).
Identifier: R-HSA-5663213
Species: Homo sapiens
WASP and WAVE proteins belong to the Wiskott-Aldrich Syndrome protein family, with recessive mutations in the founding member WASP being responsible for the X-linked recessive immunodeficieny known as the Wiskott-Aldrich Syndrome. WASP proteins include WASP and WASL (N-WASP). WAVE proteins include WASF1 (WAVE1), WASF2 (WAVE2) and WASF3 (WAVE3). WASPs and WAVEs contain a VCA domain (consisting of WH2 and CA subdomains) at the C-terminus, responsible for binding to G-actin (WH2 subdomain) and the actin-associated ARP2/3 complex (CA subdomain). WASPs contain a WH1 (WASP homology 1) domain at the N-terminus, responsible for binding to WIPs (WASP-interacting proteins). A RHO GTPase binding domain (GBD) is located in the N-terminal half of WASPs and C-terminally located in WAVEs. RHO GTPases activate WASPs by disrupting the autoinhibitory interaction between the GBD and VCA domains, which allows WASPs to bind actin and the ARP2/3 complex and act as nucleation promoting factors in actin polymerization. WAVEs have the WAVE/SCAR homology domain (WHD/SHD) at the N-terminus, which binds ABI, NCKAP1, CYFIP2 and BRK1 to form the WAVE regulatory complex (WRC). Binding of the RAC1:GTP to the GBD of WAVEs most likely induces a conformational change in the WRC that allows activating phosphorylation of WAVEs by ABL1, thus enabling them to function as nucleation promoting factors in actin polymerization through binding G-actin and the ARP2/3 complex (Reviewed by Lane et al. 2014).

Drug (4 results from a total of 4)

Identifier: R-ALL-9617400
Compartment: extracellular region
Primary external reference: Guide to Pharmacology: doxazosin: 7170
Identifier: R-ALL-9660155
Compartment: nucleoplasm
Primary external reference: Guide to Pharmacology: calcipotriol: 2778
Identifier: R-ALL-9718349
Compartment: extracellular region
Primary external reference: Guide to Pharmacology: leuprolide: 1175
Identifier: R-ALL-9648337
Compartment: extracellular region
Primary external reference: Guide to Pharmacology: iloperidone: 87
Cite Us!