Search results for IL1RL2

Showing 13 results out of 13

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (1 results from a total of 1)

Identifier: R-HSA-197599
Species: Homo sapiens
Compartment: plasma membrane
Primary external reference: UniProt: IL1RL2: Q9HB29

Reaction (5 results from a total of 5)

Identifier: R-HSA-8848316
Species: Homo sapiens
Compartment: extracellular region, plasma membrane
Interleukin-1 receptor-like 2 (IL1RL2) is a receptor for interleukin-36 (IL36A, IL36B and IL36G). After binding to interleukin-36 IL1RL2 associates with the coreceptor IL1RAP to form the interleukin-36 receptor complex which mediates interleukin-36-dependent activation of NF-kappa-B, MAPK and other pathways. IL1RL2 also binds Interleukin-1 family member 10 (IL38, IL1F10) (van de Veerdonk et al. 2012). The biological function of IL1F10 is thought to be inhibition of IL36 binding to IL36R (Yuan et al. 2015, Yi et al. 2016).
Identifier: R-HSA-9007901
Species: Homo sapiens
Compartment: extracellular region, plasma membrane
Interleukins are immunomodulatory proteins that elicit a wide array of responses in cells and tissues. Interleukin 1 family member 10 (IL1F10, IL 38) is a member of the IL1 family (Lin et al. 2001, Bensen et al. 2001). IL1F10 is produced in Human apoptotic cells (Mora et al. 2016) and human epidermal keratinocytes (based on mRNA studies) (Boutet M A et al. 2016). IL1F10 can bind to interleukin 1 receptor like 2 (IL1RL2, IL 36R, IL1Rrp2, IL1R6). This binding has biological consequences similar to another IL1RL2 ligand IL 36 receptor antagonist (IL 36Ra), such as suppression of IL17 and IL22 and induction of IL6 production (van de Veerdonk et al. 2012, Mora et al. 2016). Ultimately, these events lead to suppression of cytokine production in several types of immune cells resulting in reduced inflammation.
Identifier: R-HSA-8940998
Species: Homo sapiens
Compartment: extracellular region, plasma membrane
Interleukin-36 receptor antagonist protein (IL36RN, IL-36Ra) binds the interleukin-36 receptor subunit IL1RL2 (Interleukin-1 receptor-like 2, IL-1Rrp2). This inhibits the activity of interleukin-36 (IL36) by preventing IL1RL2 and IL1RAP from associating to form the interleukin-36 receptor complex (Towne et al. 2015). Similarly, Interleukin-1 family member 10 (IL1F10), also referred to as Interleukin-38, binds the interleukin-36 receptor subunit IL1RL2 inhibiting IL36 signaling (van de Veerdonk et al. 2012). Homozygous and compound heterozygous mutations in IL36RN have been identified to cause generalized pustular psoriasis (GPP) (Onoufriadis et al. 2011, Marrakchi et al. 2011).
Identifier: R-HSA-8848314
Species: Homo sapiens
Compartment: extracellular region, plasma membrane
After binding of IL36 to IL1RL2, the complex associates with the coreceptor IL1RAP to form the interleukin-36 receptor complex. The IL-36 signaling system is thought to be present in epithelial barriers and to take part in local inflammatory response; it is similar to the IL-1 system (Gresnigt & van de Veerdonk 2013).
Identifier: R-HSA-9008052
Species: Homo sapiens
Compartment: extracellular region, plasma membrane
Interleukins are immunomodulatory proteins that elicit a wide array of responses in cells and tissues. Interleukin 1 family member 10 (IL1F10, IL 38) is a member of the IL1 family (Lin et al. 2001, Bensen et al. 2001). IL1F10 is selectively produced by human apoptotic cells (Mora et al. 2016) and human epidermal keratinocytes (based on mRNA studies) (Boutet M A et al. 2016). IL1F10 can bind to interleukin 1 receptor like 2 (IL1RL2) and may result in the suppression of IL 17 and IL 22 and induction of IL 6 production (van de Veerdonk et al. 2012, Mora et al. 2016). IL1F10 is synthesized as precursors that require N terminal processing to attain full receptor agonist or antagonist function (Mora et al. 2016). Both full length (1 – 152 amino acids) and N terminal truncated (20 – 152 amino acids) IL1F10 can bind Interleukin 1 receptor accessory protein like 1 (IL1RAPL1) (Mora et al. 2016). The binding affinity of truncated IL1F10 is much higher than that of the full length. However, binding of the full length or truncated forms has distinct outcomes; the former induces IL6 and the latter suppresses IL6 via JNK and AP1 signaling (Mora et al. 2016).

Complex (4 results from a total of 4)

Identifier: R-HSA-8848321
Species: Homo sapiens
Compartment: plasma membrane
Identifier: R-HSA-9007902
Species: Homo sapiens
Compartment: plasma membrane
Identifier: R-HSA-8848318
Species: Homo sapiens
Compartment: plasma membrane
Identifier: R-HSA-8940997
Species: Homo sapiens
Compartment: plasma membrane

Pathway (3 results from a total of 3)

Identifier: R-HSA-9014826
Species: Homo sapiens
Interleukin-36 alpha (IL36A), IL36B and IL36G are collectively known as IL36. They are members of the Interlukin-1 family that signal through a receptor composed of Interleukin-1 receptor-like 2 (IL1RL2, IL36R) and Interleukin-1 receptor accessory protein (IL1RAP, IL-1R/AcP) to promote inflammatory responses. Interleukin-36 receptor antagonist protein (IL36RN, IL36Ra) is a natural antagonist. IL36 is expressed predominantly by epithelial cells and is implicated strongly through functional and genetic evidence in the pathology of psoriatic disorders.
Identifier: R-HSA-446652
Species: Homo sapiens
Compartment: plasma membrane
The Interleukin-1 (IL1) family of cytokines comprises 11 members, namely Interleukin-1 alpha (IL1A), Interleukin-1 beta (IL1B), Interleukin-1 receptor antagonist protein (IL1RN, IL1RA), Interleukin-18 (IL18), Interleukin-33 (IL33), Interleukin-36 receptor antagonist protein (IL36RN, IL36RA), Interleukin-36 alpha (IL36A), Interleukin-36 beta (IL36B), Interleukin-36 gamma (IL36G), Interleukin-37 (IL37) and Interleukin-38 (IL38). The genes encoding all except IL18 and IL33 are on chromosome 2. They share a common C-terminal three-dimensional structure and with apart from IL1RN they are synthesized without a hydrophobic leader sequence and are not secreted via the classical reticulum endoplasmic-Golgi pathway. IL1B and IL18, are produced as biologically inactive propeptides that are cleaved to produce the mature, active interleukin peptide. The IL1 receptor (IL1R) family comprises 10 members: Interleukin-1 receptor type 1 (IL1R1, IL1RA), Interleukin-1 receptor type 2 (IL1R2, IL1RB), Interleukin-1 receptor accessory protein (IL1RAP, IL1RAcP, IL1R3), Interleukin-18 receptor 1 (IL18R1, IL18RA) , Interleukin-18 receptor accessory protein (IL18RAP, IL18RB), Interleukin-1 receptor-like 1 (IL1RL1, ST2, IL33R), Interleukin-1 receptor-like 2 (IL1RL2, IL36R), Single Ig IL-1-related receptor (SIGIRR, TIR8), Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1, TIGGIR2) and X-linked interleukin-1 receptor accessory protein-like 2 (IL1RAPL2, TIGGIR1). Most of the genes encoding these receptors are on chromosome 2. IL1 family receptors heterodimerize upon cytokine binding. IL1, IL33 and IL36 bind specific receptors, IL1R1, IL1RL1, and IL1RL2 respectively. All use IL1RAP as a co-receptor. IL18 binds IL18R1 and uses IL18RAP as co-receptor. The complexes formed by IL1 family cytokines and their heterodimeric receptors recruit intracellular signaling molecules, including Myeloid differentiation primary response protein MyD88 (MYD88), members of he IL1R-associated kinase (IRAK) family, and TNF receptor-associated factor 6 (TRAF6), activating Nuclear factor NF-kappa-B (NFκB), as well as Mitogen-activated protein kinase 14 (MAPK14, p38), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinases (ERKs) and other Mitogen-activated protein kinases (MAPKs).
Identifier: R-HSA-9007892
Species: Homo sapiens
Compartment: cytosol, extracellular region, nucleoplasm
Interleukins are immunomodulatory proteins that elicit a wide array of responses in cells and tissues. Interleukin 1 family member 10 (IL1F10, IL 38) is a member of the IL1 family (Lin et al. 2001, Bensen et al. 2001). IL1F10 is selectively produced by human apoptotic cells (Mora et al. 2016) and human epidermal keratinocytes (based on mRNA studies) (Boutet M A et al. 2016). IL1F10 can bind to interleukin 1 receptor like 2 (IL1RL2) and may result in the suppression of IL 17 and IL 22 and induction of IL 6 production (van de Veerdonk et al. 2012, Mora et al. 2016). IL1F10 is synthesized as precursors that require N terminal processing to attain full receptor agonist or antagonist function (Mora et al. 2016). Both full length (1 – 152 amino acids) and N terminal truncated (20 – 152 amino acids) IL1F10 can bind Interleukin 1 receptor accessory protein like 1 (IL1RAPL1) (Mora et al. 2016). The binding affinity of truncated IL1F10 is much higher than that of the full length. However, binding of the full length or truncated forms has distinct outcomes; the former induces IL6 and the latter suppresses IL6 via JNK and AP1 signaling (Mora et al. 2016).
Cite Us!