Search results for LPIN1

Showing 10 results out of 10

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (3 results from a total of 3)

Identifier: R-HSA-549157
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
Primary external reference: UniProt: LPIN1: Q14693
Identifier: R-HSA-4419927
Species: Homo sapiens
Compartment: nuclear envelope
Primary external reference: UniProt: Q14693
Identifier: R-HSA-4419936
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: LPIN1: Q14693

Complex (1 results from a total of 1)

Identifier: R-HSA-1500637
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane

Set (1 results from a total of 1)

Identifier: R-HSA-549151
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane

Reaction (5 results from a total of 5)

Identifier: R-HSA-75899
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
Lipin proteins LPIN1, 2, and 3, associated with the endoplasmic reticulum membrane, can each catalyze the hydrolysis of phosphatidate to yield 1,2-diacyl-glycerol and orthophosphate. The activities of LPIN1 and LPIN2 have been established experimentally (Grimsey et al. 2008); that of LPIN3 is inferred from its structural similarities both to its human paralogues and to its mouse ortholog (Donkor et al. 2007). Only LPIN1 has been shown to be stably associated with the endoplasmic reticulum, but all three enzymes appear to be catalytically active at that location (Grimsey et al. 2008; Donkor et al. 2007).
Identifier: R-HSA-5221130
Species: Homo sapiens
Compartment: nuclear envelope, nucleoplasm
Lipin proteins LPIN1, 2, and 3, associated with the nuclear envelope, can each catalyze the hydrolysis of phosphatidate to yield 1,2-diacyl-glycerol and orthophosphate. The activities of LPIN1 and LPIN2 have been established experimentally (Grimsey et al. 2008); that of LPIN3 is inferred from its structural similarities both to its human paralogues and to its mouse ortholog (Donkor et al. 2007).
Identifier: R-HSA-5195402
Species: Homo sapiens
Compartment: nucleoplasm
Lipins (LPIN1, LPIN2, LPIN3) possess several proline-directed phosphorylation sites that can be phosphorylated by CDK1 (Grimsey et al. 2008), including S106. Serine S106 in lipins is a preferred target for dephosphorylation by the evolutionarilly conserved CTDNEP1:CNEP1R1 complex (ortholog of yeast NEM1:SPO7 complex). Lipin phosphorylation regulates lipin localization, with phosphorylated lipins being soluble and dephosphorylated lipins being membrane-bound. The yeast ortholog of CDK1, CDC28, as well as human CDK1 can phosphorylate yeast lipin PAH1, inducing its dissociation from the nuclear envelope and endoplasmic reticulum membrane (Choi et al. 2011).
Identifier: R-HSA-5223304
Species: Homo sapiens
Compartment: nuclear envelope, nucleoplasm
PKC contains an N-terminal C2 like domain, a pseudosubstrate (PS), DAG binding (C1) domain and a C-terminal kinase domain. The PS sequence resembles an ideal substrate with the exception that it contains an alanine residue instead of a substrate serine residue, is bound to the kinase domain in the resting state. As a result, PKC is maintained in a closed inactive state, which is inaccessible to cellular substrates (Colon-Gonzalez & Kazanietz 2006). Diacylglycerol (DAG) produced by activated lipins (LPIN1, LPIN2, LPIN3) leads to the activation of PKC (PRKCA and PRKCB) and their translocation from the nucleoplasm to the nuclear envelope where they can phosphorylate lamins (Mall et al. 2012). PKCs are tethered to the membrane through DAG binding to the C1 domain and this confers a high-affinity interaction between PKC and the membrane. This leads to a massive conformational change that releases the PS domain from the catalytic site and the system becomes both competent and accessible (Colon-Gonzalez & Kazanietz 2006).
Identifier: R-HSA-4419948
Species: Homo sapiens
Compartment: nuclear envelope, nucleoplasm
CTDNEP1:CNEP1R1 serine/threonine protein phosphatase complex consists of the catalytic subunit CTDNEP1 (Dullard) and the regulatory subunit CNEP1R1 (TMEM188) and is evolutionarily conserved from yeast to mammals (Kim et al. 2007, Han et al. 2012). CTDNEP1:CNEP1R1 and its yeast counterpart NEM1:SPO7 localize to the nuclear envelope and the endoplasmic reticulum membrane. CTDNEP1:CNEP1R1 dephosphorylates lipins (LPIN1, LPIN2 and LPIN3), which act as phosphatidate phosphatases, dephosphorylating phosphatidate (PA) and converting it to diacylglycerol (DAG). The yeast NEM1:SPO7 complex dephosphorylates yeast lipin orthologue PAH1 (SMP2, PAP1). CTDNEP1:CNEP1R1 shows a preference for the phosphorylated serine S106 of lipins. S106 phosphorylation is insulin-induced, and could be mediated by CDK1, as it is proline-directed (Wu et al. 2011). CDC28, a yeast homolog of CDK1, was shown to phosphorylate PAH1, while NEM1:SPO7 removes CDC28-introduced phosphate groups. Lipin phosphorylation regulates lipin localization, with phosphorylated lipins being soluble and dephosphorylated lipins being membrane-bound (Grimsey et al. 2008, Choi et al. 2011). The association of lipins with the nuclear envelope brings lipins in proximity to its substrate, PA, thereby enabling lipin catalytic activity (Karanasios et al. 2010). Catalytic activity of PAH1 regulates the morphology and dynamics of endoplasmic reticulum and nuclear membranes in yeast. In C. elegans and in human cell lines, lipin catalytic activity is needed for mitotic progression as it facilitates depolymerization of the nuclear lamina and nuclear envelope breakdown (Santos-Rosa et al. 2005, Kim et al. 2007, Gorjanacz et al. 2009, Golden et al. 2009, Choi et al. 2011, Mall et al. 2012).
Cite Us!