Search results for MEN1

Showing 13 results out of 13

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (4 results from a total of 4)

Identifier: R-HSA-2186626
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: MEN1: O00255
Identifier: R-HSA-5672315
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: MEN1: O00255
Identifier: R-HSA-8956785
Species: Homo sapiens
Compartment: endoplasmic reticulum lumen
Primary external reference: UniProt: O00255
Identifier: R-HSA-8956901
Species: Homo sapiens
Compartment: endoplasmic reticulum lumen
Primary external reference: UniProt: O00255

Interactor (2 results from a total of 2)

Identifier: O00255-2
Species: Homo sapiens
Primary external reference: UniProt: O00255-2

SF1

Identifier: Q15637-4
Species: Homo sapiens
Primary external reference: UniProt: Q15637-4

Reaction (4 results from a total of 4)

Identifier: R-HSA-2186643
Species: Homo sapiens
Compartment: nucleoplasm
MEN1 (menin), a transcription factor tumor suppressor mutated in a familial cancer syndrome multiple endocrine neoplasia type 1, binds SMAD2/3:SMAD4 heterotrimer through interaction with SMAD3. MEN1 likely acts as a trancriptional cofactor for SMAD2/3:SMAD4 and may be involved in transcriptional regulation of some SMAD2/3:SMAD4 target genes (Kaji et al. 2001, Sowa et al. 2004, Canaff et al. 2012).
Identifier: R-HSA-5672304
Species: Homo sapiens
Compartment: cytosol, plasma membrane
IQGAP1 binds the complex of E-cadherin (CDH1), beta-catenin (CTTNB1) and alpha-catenin (CTTNA1) at adherens junctions (Kuroda et al. 1998, Hage et al. 2009) and this interaction is corroborated by menin (MEN1) (Yan et al. 2009). It is implicated that IQGAP1 binding to CTTNB1 causes CTTNA1 to dissociate from the E-cadherin:catenin complex (Kuroda et al. 1998, Fukata et al. 1999). Binding of IQGAP1 to activated RAC1 or CDC42 competes with IQGAP1 association with the CDH1 dimer:CTTNB1:CTTNA1 complex (Kuroda et al. 1998, Fukata et al. 1999, Yan et al. 2009, Hage et al. 2009). Studies done in pancreatic cell lines found that the binding of IQGAP1 to E-cadherin:catenin complex at adherens junctions increases cell adhesion and decreases cell motility (Yan et al. 2009, Hage et al. 2009). On the contrary, studies done in mouse fibroblasts reported that IQGAP1 binding to E-cadherin:catenin complex and the concomitant displacement of CTTNA1 causes dissociation of adherens junctions (Kuroda et al. 1998, Fukata et al. 1999).
Identifier: R-HSA-9670619
Species: Homo sapiens
Compartment: nucleoplasm
ATRX mutations identified in cancer are frequently nonsense and frameshift mutations that result in premature protein truncation. Mutant ATRX proteins are usually undetectable in the nucleus (Jiao et al. 2011). Missense mutants of ATRX have not been functionally tested in the context of the full length protein (Jiao et al. 2011). ATRX likely contains two DAXX-binding modules. The module mapping to amino acids 1189-1326 strongly binds to DAXX and is thought to be the main DAXX interaction domain. The module mapping to amino acids 321-865 weakly binds to DAXX (Tang et al. 2004), if at all (Wang et al. 2017). A truncation mutant of ATRX that consists of the N-terminal 338 amino acids, generated by directed mutagenesis, does not bind to DAXX (Tang et al. 2004). The minimal portion of ATRX that can, on its own, interact with DAXX involves amino acids 1253-1326 (Wang et al. 2017). Some ATRX missense mutants have been functionally evaluated in the context of the fragment that consists of amino acids 1253-1326 (Wang et al. 2017), but are not shown here. All ATRX truncation mutants in which the stop codon occurs upstream of the amino acid 339 are annotated as loss-of-function mutants. These include the following nonsense mutants:
ATRX E63*
ATRX S79*
ATRX G161*
ATRX Q176*
ATRX Q177*
ATRX Y187*
ATRX R188*
ATRX Q193*
ATRX S213*
ATRX W222*
ATRX R250*
ATRX L253*
ATRX W263*
ATRX Y266*
ATRX E288*
ATRX Q292*
ATRX K319*
and the following frameshift mutants:
ATRX A23Hfs*18
ATRX S112Qfs*15
ATRX G124Vfs*3
ATRX R160Pfs*29
ATRX H166Mfs*4
ATRX Q176Hfs*13
ATRX D184Ifs*22
ATRX P190Hfs*15
ATRX Y204*
ATRX M205*
ATRX C268Qfs*18
ATRX L273Ffs*9
ATRX L274Ffs*8
ATRX K329Ifs*3
ATRX K330Nfs*2.
All ATRX truncation mutants that lack the second DAXX-binding module are annotated as candidate loss-of-function mutants. These include the following nonsense mutants of ATRX:
ATRX Y341*
ATRX Q391*
ATRX E431*
ATRX K455*
ATRX K459*
ATRX E482*
ATRX E533*
ATRX Q545*
ATRX G551*
ATRX S567*
ATRX E585*
ATRX E625*
ATRX E643*
ATRX R666*
ATRX E680*
ATRX Q727*
ATRX S729*
ATRX S750*
ATRX R781*
ATRX K782*
ATRX S788*
ATRX R808*
ATRX K823*
ATRX K826*
ATRX K967*
ATRX K983*
ATRX Q984*
ATRX K1052*
ATRX E1065*
ATRX G1071*
ATRX S1101*
ATRX E1119*
ATRX E1159*
and the following frameshift mutants of ATRX:
ATRX S342*
ATRX K358Nfs*2
ATRX L359Hfs*3
ATRX L359Tfs*3
ATRX I360Rfs*6
ATRX I383Nfs*11
ATRX T387Qfs*27
ATRX K425Rfs*8
ATRX N428Yfs*5
ATRX L452Ffs*12
ATRX S471Vfs*43
ATRX V478Ffs*36
ATRX L513*
ATRX T534Wfs*3
ATRX Q554Rfs*21
ATRX S558Ifs*4
ATRX K562*
ATRX L639Wfs*10
ATRX P663Yfs*10
ATRX L664*
ATRX N676Kfs*17
ATRX T684Sfs*2
ATRX E723Dfs*9
ATRX V725Gfs*7
ATRX I737Kfs*3
ATRX L738Gfs*13
ATRX S747Ffs*6
ATRX S747Rfs*6
ATRX D774Mfs*29
ATRX K778Nfs*23
ATRX S784Lfs*13
ATRX D791*
ATRX T792Ifs*12
ATRX S797*
ATRX K823Rfs*7
ATRX A834Pfs*35
ATRX R840Efs*29
ATRX R840Kfs*9
ATRX T844Yfs*5
ATRX G859Efs*10
ATRX G859Rfs*4
ATRX S871Hfs*34
ATRX S876Lfs*29
ATRX Q883Rfs*13
ATRX R885Sfs*21
ATRX E886Dfs*10
ATRX E886Lfs*18
ATRX F888Sfs*17
ATRX K910*
ATRX K945Rfs*25
ATRX V957Sfs*7
ATRX K971Tfs*31
ATRX E976Dfs*2
ATRX E991Gfs*9
ATRX K993Rfs*10
ATRX K994Efs*6
ATRX P995Tfs*5
ATRX K1001Nfs*3
ATRX V1002*
ATRX E1010Mfs*24
ATRX E1017Dfs*5
ATRX K1018Rfs*5
ATRX K1045*
ATRX I1049*
ATRX I1049Kfs*69
ATRX I1049Mfs*3
ATRX I1049Nfs*4
ATRX K1057Rfs*61
ATRX K1081Rfs*37
ATRX D1106Ifs*12
ATRX C1122Lfs*8
ATRX D1126Rfs*3
ATRX R1128Sfs*2
ATRX K1143Rfs*47
ATRX T1172Lfs*18.
Identifier: R-HSA-3364014
Species: Homo sapiens
Compartment: nucleoplasm
A number of SET1-type complex proteins are pulled down from HeLa and SW480 extracts by a fragment of beta-catenin consisting of ARM repeats 11 and 12 and the adjacent C-terminal activation domain (Sierra et al, 2006). SET1 complexes are histone methyltransferases that promote H3K4 trimethylation in a manner that depends on prior ubiquitination of H2B; H3K4 is a mark associated with active chromatin (reviewed in Shilatifard, 2006). ChIP experiments show that SET1 complex members MLL2, MEN1, RBBP5 and ASH2L cycle on and off the MYC promoter in vivo in a complex with BCL9, PYGO and beta-catenin. Recruitment of the SET proteins correlates with increased H3K4me3 and transcription of the MYC gene, and endogenous mMYC mRNA levels decline somewhat in the presence of MLL2 siRNA. These data suggest that the C-terminal of beta-catenin interacts with a functional histone H3 methyltransferase complex that activates WNT-target gene transcription (Sierra et al, 2006).

Complex (2 results from a total of 2)

Identifier: R-HSA-2186642
Species: Homo sapiens
Compartment: nucleoplasm
Identifier: R-HSA-5672317
Species: Homo sapiens
Compartment: plasma membrane

Pathway (1 results from a total of 1)

Identifier: R-HSA-2173796
Species: Homo sapiens
After phosphorylated SMAD2 and/or SMAD3 form a heterotrimer with SMAD4, SMAD2/3:SMAD4 complex translocates to the nucleus (Xu et al. 2000, Kurisaki et al. 2001, Xiao et al. 2003). In the nucleus, linker regions of SMAD2 and SMAD3 within SMAD2/3:SMAD4 complex can be phosphorylated by CDK8 associated with cyclin C (CDK8:CCNC) or CDK9 associated with cyclin T (CDK9:CCNT). CDK8/CDK9-mediated phosphorylation of SMAD2/3 enhances transcriptional activity of SMAD2/3:SMAD4 complex, but also primes it for ubiquitination and consequent degradation (Alarcon et al. 2009).

The transfer of SMAD2/3:SMAD4 complex to the nucleus can be assisted by other proteins, such as WWTR1. In human embryonic cells, WWTR1 (TAZ) binds SMAD2/3:SMAD4 heterotrimer and mediates TGF-beta-dependent nuclear accumulation of SMAD2/3:SMAD4. The complex of WWTR1 and SMAD2/3:SMAD4 binds promoters of SMAD7 and SERPINE1 (PAI-1 i.e. plasminogen activator inhibitor 1) genes and stimulates their transcription (Varelas et al. 2008). Stimulation of SMAD7 transcription by SMAD2/3:SMAD4 represents a negative feedback loop in TGF-beta receptor signaling. SMAD7 can be downregulated by RNF111 ubiquitin ligase (Arkadia), which binds and ubiquitinates SMAD7, targeting it for degradation (Koinuma et al. 2003).

SMAD2/3:SMAD4 heterotrimer also binds the complex of RBL1 (p107), E2F4/5 and TFDP1/2 (DP1/2). The resulting complex binds MYC promoter and inhibits MYC transcription. Inhibition of MYC transcription contributes to anti-proliferative effect of TGF-beta (Chen et al. 2002). SMAD2/3:SMAD4 heterotrimer also associates with transcription factor SP1. SMAD2/3:SMAD4:SP1 complex stimulates transcription of a CDK inhibitor CDKN2B (p15-INK4B), also contributing to the anti-proliferative effect of TGF-beta (Feng et al. 2000).

MEN1 (menin), a transcription factor tumor suppressor mutated in a familial cancer syndrome multiple endocrine neoplasia type 1, forms a complex with SMAD2/3:SMAD4 heterotrimer, but transcriptional targets of SMAD2/3:SMAD4:MEN1 have not been elucidated (Kaji et al. 2001, Sowa et al. 2004, Canaff et al. 2012).

JUNB is also an established transcriptional target of SMAD2/3:SMAD4 complex (Wong et al. 1999).
Cite Us!