Search results for NEU4

Showing 6 results out of 6

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (2 results from a total of 2)

Identifier: R-HSA-1605806
Species: Homo sapiens
Compartment: lysosomal lumen
Primary external reference: UniProt: NEU4: Q8WWR8
Identifier: R-HSA-1605606
Species: Homo sapiens
Compartment: lysosomal lumen
Primary external reference: UniProt: NEU4: Q8WWR8

Reaction (3 results from a total of 3)

Identifier: R-HSA-9638120
Species: Homo sapiens
Compartment: lysosomal lumen
Sialidases 1-4 (NEU1-4, neuraminidases, receptor-destroying enzymes, RDEs) hydrolyse sialic acids (N-acetylneuraminic acid, Neu5Ac) to produce asialo compounds, a step in the degradation process of glycoproteins and gangliosides and are expressed in a variety of cellular locations. NEU4 is an extrinsic membrane protein associated with lysosomes, mitochondria and endoplasmic reticulum. It has broad sialidase activity against glycoconjugates with alpha2,3-, alpha2,6- or alpha2,8-linkages (Bigi et al. 2010, Monti et al. 2004, Seyrantepe et al. 2004). NEU1 (lysosomal sialidase) hydrolyses Neu5Ac from glycoconjugates with alpha2,3-, alpha2,6- or alpha2,8-linked terminal sialated residues in the lysosomal lumen. NEU1 is active in a multienzyme complex comprising cathepsin A protective protein (CTSA) and beta-galactosidase (Bonten et al. 1996, Rudenko et al. 1995). Defects in NEU1 cause Sialidosis (MIM:256550), a lysosomal storage disorder manifesting as type I (late-onset) or type II (earlier-onset) (Bonten et al. 1996). CTSA is thought to exert a protective function necessary for stability and activity of these enzymes (Galjart et al. 1988). Defects in CTSA are the cause of galactosialidosis (GSL; MIM:256540) (Zhou et al. 1991).
Identifier: R-HSA-4084999
Species: Homo sapiens
Compartment: lysosomal lumen
Sialidases 1-4 (NEU1-4, neuraminidases, receptor-destroying enzymes, RDEs) hydrolyse sialic acids (N-acetylneuraminic acid, Neu5Ac) to produce asialo compounds, a step in the degradation process of glycoproteins and gangliosides and are expressed in a variety of cellular locations. NEU4 is an extrinsic membrane protein associated with lysosomes, mitochondria and endoplasmic reticulum. It has broad sialidase activity against glycoconjugates with alpha2,3-, alpha2,6- or alpha2,8-linkages (Bigi et al. 2010, Monti et al. 2004, Seyrantepe et al. 2004). NEU1 (lysosomal sialidase) hydrolyses Neu5Ac from glycoconjugates with alpha2,3-, alpha2,6- or alpha2,8-linked terminal sialated residues in the lysosomal lumen. NEU1 is active in a multienzyme complex comprising cathepsin A protective protein (CTSA) and beta-galactosidase (Bonten et al. 1996, Rudenko et al. 1995). Defects in NEU1 cause Sialidosis (MIM:256550), a lysosomal storage disorder manifesting as type I (late-onset) or type II (earlier-onset) (Bonten et al. 1996). CTSA is thought to exert a protective function necessary for stability and activity of these enzymes (Galjart et al. 1988). Defects in CTSA are the cause of galactosialidosis (GSL; MIM:256540) (Zhou et al. 1991).
Identifier: R-HSA-1605724
Species: Homo sapiens
Compartment: lysosomal lumen
Ganglioside GM3, mobilized by Saposin B (PSAP(195-273)), is hydrolyzed by sialidases to lactosylceramide (LacCer). Sialidases (NEU, neuraminidases) hydrolyze sialic acids (N-acetylneuramic acid, Neu5Ac, NANA) to produce asialo compounds, a step in the degradation process of glycoproteins and gangliosides. NEU1 and NEU4 hydrolyse NANA in the lysosomal lumen. NEU1 is active in a multienzyme complex comprising cathepsin A protective protein (CTSA) and beta-galactosidase (Bonten et al. 1996, Rudenko et al. 1995). Defects in NEU1 cause Sialidosis (MIM:256550) (Bonten et al. 1996). CTSA appears to exert a protective function necessary for the stability and activity of these enzymes (Galjart et al. 1988). Defects in CTSA are the cause of galactosialidosis (GSL, MIM:256540) (Zhou et al. 1991). NEU4 is also a lysosomal sialidase which, unlike NEU1, does not require association with other proteins for enzymatic activity. Isoform 2 seems to be the lysosomal sialidase (Seyrantepe et al. 2004). Researchers observed elevated GM3 in prosaposin deficiency (PSAPD, MIM: 611721) cases, a rare disease with low levels of all saposins. The essential cofactor missing appears to be Saposin B (PSAP(195-273)) (Schmidt et al., 1992; Bradova et al., 1993).

Complex (1 results from a total of 1)

Identifier: R-HSA-4088186
Species: Homo sapiens
Compartment: lysosomal lumen
Cite Us!