Search results for R-HSA-6804116

Showing 1 results out of 1

×

Species

Types

Reaction types

Search properties

Species

Types

Reaction types

Search properties

Results (1 results from a total of 1)

Identifier: R-HSA-6804116
Species: Homo sapiens
The most prominent TP53 target involved in G1 arrest is the inhibitor of cyclin-dependent kinases CDKN1A (p21). CDKN1A is one of the earliest genes induced by TP53 (El-Deiry et al. 1993). CDKN1A binds and inactivates CDK2 in complex with cyclin A (CCNA) or E (CCNE), thus preventing G1/S transition (Harper et al. 1993). Considering its impact on the cell cycle outcome, CDKN1A expression levels are tightly regulated. For instance, under prolonged stress, TP53 can induce the transcription of an RNA binding protein PCBP4, which can bind and destabilize CDKN1A mRNA, thus alleviating G1 arrest and directing the affected cell towards G2 arrest and, possibly, apoptosis (Zhu and Chen 2000, Scoumanne et al. 2011). Expression of E2F7 is directly induced by TP53. E2F7 contributes to G1 cell cycle arrest by repressing transcription of E2F1, a transcription factor that promotes expression of many genes needed for G1/S transition (Aksoy et al. 2012, Carvajal et al. 2012). ARID3A is a direct transcriptional target of TP53 (Ma et al. 2003) that may promote G1 arrest by cooperating with TP53 in induction of CDKN1A transcription (Lestari et al. 2012). However, ARID3A may also promote G1/S transition by stimulating transcriptional activity of E2F1 (Suzuki et al. 1998, Peeper et al. 2002).

TP53 has co-factors that are key determinants of transcriptional selectivity within the p53 network. For instance, the zinc finger transcription factor ZNF385A (HZF) is a direct transcriptional target of TP53 that can form a complex with TP53 and facilitate TP53-mediated induction of CDKN1A, strongly favouring cell cycle arrest over apoptosis (Das et al. 2007).

Cite Us!