Search results for RAB43

Showing 16 results out of 16

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (3 results from a total of 3)

Identifier: R-HSA-6813902
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: RAB43: Q86YS6
Identifier: R-HSA-6814810
Species: Homo sapiens
Compartment: trans-Golgi network membrane
Primary external reference: UniProt: RAB43: Q86YS6
Identifier: R-HSA-8874038
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: RAB43: Q86YS6

Reaction (9 results from a total of 9)

Identifier: R-HSA-8847534
Species: Homo sapiens
Compartment: trans-Golgi network membrane
RAB GAP USP6NL stimulates the GTPase activity of RAB43, promoting hydrolysis of GTP. Both RAB43 and USP6NL have been identifed as contributing to the retrograde transport of Shiga toxin to the Golgi, however the details of their roles remain to be elucidated (Fuchs et al, 2007; Haas et al, 2007; reviewed in Pfeffer, 2011).
Identifier: R-HSA-8847537
Species: Homo sapiens
Compartment: trans-Golgi network membrane
RAB43 contributes to the maintenance of Golgi structure and is required for the RAB6-dependent retrograde trafficking of Shiga toxin (Fuchs et al, 2007; Haas et al, 2007). RAB43 appears to be localized to the cis side of the Golgi, so the details of how and when it affects Shiga transport remain to be clarified (Dejgaard et al, 2007). Screens of human cells identified USP6NL as a RAB43-specific GTPase activating (GAP) protein that is also implicated in Shiga trafficking (Fuchs et al, 2007; Haas et al, 2007; reviewed in Pfeffer, 2011).
Identifier: R-HSA-6814833
Species: Homo sapiens
Compartment: endoplasmic reticulum-Golgi intermediate compartment membrane
TBC1D20 was identified as a RAB1-specific GTPase activating protein (GAP) that stimulates RAB1-mediated GTP hydrolysis and plays roles in ER-to-Golgi trafficking. TBC1D20 is the only GAP that has been identified to block delivery of secretory cargo from the ER to the cell surface (Haas et al, 2007).
Identifier: R-HSA-8850041
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
The RAB3GAP1:RAB3GAP2 complex promotes nucleotide exchange of RAB18 at the ER membrane, activating it (Gerondopoulos et al, 2014). How active RAB18 contributes to COPI-independent retrograde Golgi-to-ER traffic remains to be worked out, however a role in tubule tethering is postulated based on the interaction of RAB18 with components of the ER localized NRZ tethering factor (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Gillingham et al, 2014).
Identifier: R-HSA-6814831
Species: Homo sapiens
Compartment: endoplasmic reticulum-Golgi intermediate compartment membrane
TBC1D20 was identified as a GTPase activating protein for RAB1 that stimulates basal GTP hydrolysis by more than 5 orders of magnitude (Haas et al, 2007; Fuchs et al, 2007).
Identifier: R-HSA-8849353
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
The RAB6 pathway moves select retrograde cargo from the Golgi to the ER in a motor-dependent manner, although the precise details of this translocation remain to be worked out (Girod et al, 1999; White et al, 1999; reviewed in Heffernan and Simpson, 2014). Active RAB18 at the ER membrane may contribute to targeting and fusion of COPI-independent retrograde carriers through interaction with ER-localized tethering factors (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Gillingham et al, 2014)
Identifier: R-HSA-8850040
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
RAB18 is a highly conserved RAB GTPase with roles in Golgi to ER trafficking, lipid droplet formation and the regulation of secretory granules and peroxisomes (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Martin et al, 2005; Ozeki et al, 2005; Vazquez-Martinez et al, 2007; Gronemeyer et al, 2013). RAB18 is recruited to the ER membrane by the RAB18 GEF complex RAB3GAP1:RAB3GAP2, a complex that was initially identified and characterized for its GAP activity towards RAB3 (Gerondopoulos et al, 2013; Fukui et al, 1997; Nagano et al, 1998).
Identifier: R-HSA-8877998
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane, cytosol
RAB18 is a highly conserved RAB GTPase with roles in Golgi to ER trafficking, lipid droplet formation and the regulation of secretory granules and peroxisomes (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Martin et al, 2005; Ozeki et al, 2005; Vazquez-Martinez et al, 2007; Gronemeyer et al, 2013). RAB18 is recruited to the ER membrane by the RAB18 GEF complex RAB3GAP1:RAB3GAP2, a complex that was initially identified and characterized for its GAP activity towards RAB3 (Gerondopoulos et al, 2013; Fukui et al, 1997; Nagano et al, 1998; reviewed in Ishida et al, 2016). Interaction of RAB18:GDP with its GEF promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB18 with GDI and CHM proteins. Mutations in RAB18, RAB3GAP1 or RAB3GAP2 are associated with Warburg Micro syndromes, characterized by ocular and neurological abnormalities (Handley and Aligianis, 2013; reviewed in Handley and Aligianis, 2012).
Identifier: R-HSA-6811431
Species: Homo sapiens
Compartment: trans-Golgi network membrane
Active RAB6 contributes to the recruitment of the Golgi-associated retrograde protein (GARP) tethering complex to the TGN, where it aids in the capture of retrograde vesicles from the early endosome (Liewen et al, 2005; reviewed in Bonifacino and Hierro, 2011). Typical cargo of these vesicles includes resident TGN proteins such as TGOLN2 (also known as TGN46) and internalized Shiga toxin subunit B (STx-B) and cholera toxin (Perez-Victoria et al, 2008; Ganley et al 2008; Pusapati et al, 2012; reviewed in Pfeffer, 2011; Liu and Storrie, 2012). Two studies have identifed RAB43 and its associated GAP USP6NL as being required for the retrograde traffic of Shiga toxin, however the details of this remain to be worked out (Haas et al, 2007; Fuchs et al, 2007).
The human GARP complex consists of VPS54, VPS53, VPS52 and VPS51 and has been shown to interact with GTP-bound RAB6, with the TGN SNAREs STX10 and STX16 and with a vesicle fraction containing the v-SNARE VAMP4 (Connibear et al, 2000; Liewen et al, 2005; Perez-Victoria et al, 2009; Perez-Victoria et al, 2010; Siniossoglou and Pelham, 2002; reviewed in Bonafacino and Hierro, 2011).

Like the GARP complex, the conserved oligomeric Golgi (COG) complex has also been implicated in retrograde traffic of TGOLN2 and STx-B in a STX6:STX16:VTI1A and VAMP4-dependent manner, and COG has been shown to interact directly with RAB6 (Mallard et al, 2002; Fukuda et al, 2008; Laufman et al, 2011; reviewed in Pfeffer, 2011). Despite the representation in this reaction, however, there is not yet evidence that the GARP and the COG complexes act together to facilitate the capture of a single early endosome-derived vesicle.
In addition to the multisubunit tethering complexes COG and GARP, the long coiled-coil TGN-associated Golgins also contribute to tethering of vesicles derived from the early endosome (Luke et al, 2005; Derby et al, 2007; Reddy et al, 2006; Lu et al, 2004; Yoshino et al, 2005; Hayes et al, 2009; reviewed in Munro, 2011).

Complex (4 results from a total of 4)

Identifier: R-HSA-8847528
Species: Homo sapiens
Compartment: trans-Golgi network membrane
Identifier: R-HSA-8847526
Species: Homo sapiens
Compartment: trans-Golgi network membrane
Identifier: R-HSA-8847533
Species: Homo sapiens
Compartment: trans-Golgi network membrane
Identifier: R-HSA-8847530
Species: Homo sapiens
Compartment: trans-Golgi network membrane
Cite Us!