Search results for RNF146

Showing 12 results out of 12

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (1 results from a total of 1)

Identifier: R-HSA-3640827
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: RNF146: Q9NTX7

Interactor (1 results from a total of 1)

Identifier: Q9NTX7-2
Species: Homo sapiens
Primary external reference: UniProt: Q9NTX7-2

Reaction (7 results from a total of 7)

Identifier: R-HSA-8948832
Species: Homo sapiens
Compartment: cytosol
The E3 ubiquitin ligase RNF146 possesses a PAR recognition domain (WWE) which binds to PARylated PTEN. RNF146 polyubiquitinates PARylated PTEN, with lysine residues K342, K344 and K349 as major ubiquitination sites. RNF146-mediated ubiquitination targets PTEN for proteasome-mediated degradation (Li et al. 2015).
Identifier: R-HSA-3640844
Species: Homo sapiens
Compartment: cytosol
RNF146 is an E3 RING ubiquitin ligase that was identified as a positive regulator of WNT signalling (Callow et al, 2011; Zhang et al, 2011). Depletion of RNF146 increases the levels of AXIN and decreases expression of WNT target genes and WNT-responsive reporters in a WNT-independent manner (Zhang et al, 2011; Callow et al, 2011). RNF146 binds directly to poly-ADP-ribose groups through its WWE domain and ubiquitinates substrates in a tankyrase-dependent manner (Zhang et al, 2011). AXIN, Tankyrase and RNF146 are thought to exist in a complex (Callow et al, 2011) and RNF146 mediates the tankyrase-dependent ubiquitination of all three proteins to promote their degradation (Callow et al, 2011; Zhang et al, 2011). In this reaction, only the targeted degradation of AXIN is depicted.
Identifier: R-HSA-3640861
Species: Homo sapiens
Compartment: cytosol
RNF146 has in vitro and in vivo ubiquitination activity against AXIN, Tankyrase and itself (Callow et al, 2011; Zhang et al, 2011).
Identifier: R-HSA-3640874
Species: Homo sapiens
Compartment: cytosol
In the presence of the proteasome inhibitor MG132, polyubiquitinated forms of AXIN accumulate (Huang et al, 2009; Zhang et al, 2011; Callow et al, 2011). This effect is abrogated by co-treatment of cells with both MG132 and inhibitors of tankyrase activity, suggesting that both PARSylation and ubiquitination are required for AXIN degradation (Huang et al, 2009).
Identifier: R-HSA-3640858
Species: Homo sapiens
Compartment: cytosol
TNKS1 and 2 function redundantly to control AXIN protein levels through the addition of poly-ADP-ribosyl groups (PARSylation), which may lead to subsequent ubiquitination and degradation by the proteasome. In HEK293, SW480 and breast cancer cell lines, depletion of TNKS1 and 2 increases the protein levels of AXIN1 and AXIN2 resulting in increased beta-catenin phosphorylation, decreased beta-catenin abundance and decreased expression of WNT targets and WNT-responsive reporters (Huang et al, 2009; Callow et al, 2011; Waaler et al, 2012; Bao et al, 2012). In vitro, TNKS2 catalyzes the addition of ADP-ribosyl groups to the TBD fragment of AXIN1, while in vivo, both exogenous GST-AXIN1 and endogenous AXIN1 are PARSylated in a TNKS-dependent manner (Huang et al, 2009; Callow et al, 2011; Zhang et al, 2011). PARSylation is likely required for the subsequent proteasome-mediated degradation of AXIN, as the increase in levels of polyubiquitinated AXIN1 and 2 seen upon treatment of cells with the proteasome inhibitor MG132 is lost if cells are simultaneously treated with an inhibitor of TNKS1 and 2 (Huang et al, 2009). Although in this reaction, TNKS is shown PARSylating unbound AXIN, it is likely that this regulation occurs at the level of the destruction complex. Also not shown in this reaction is the ability of TNKS to catalyze autoPARSylation reactions, which ultimately lead to its own degradation (Yeh et al, 2006; Huang et al, 2009; Zhang et al, 2011).
Identifier: R-HSA-8850992
Species: Homo sapiens
Compartment: cytosol
PTEN, polyubiquitinated by either NEDD4 (Wang et al. 2007), STUB1 (CHIP) (Ahmed et al. 2011), WWP2 (Maddika et al. 2011), XIAP (Van Themsche et al. 2009), MKRN1 (Lee et al. 2015) or RNF146 (Li et al. 2015), is degraded by the proteasome.
Identifier: R-HSA-8948800
Species: Homo sapiens
Compartment: cytosol
PTEN can bind tankyrases TNKS (TNKS1) and TNKS2. The interaction involves the tankyrase binding motif at the N-terminus of PTEN (RYQEDG). TNKS and TNKS2 poly-ADP-ribosylate (PARylate) PTEN on glutamic acid residues E40 and E150 and on aspartic acid residue D326. PTEN PARylation is a pre-requisite for RNF146-mediated ubiquitination of PTEN (Li et al. 2015).

Pathway (3 results from a total of 3)

Identifier: R-HSA-4641257
Species: Homo sapiens
AXIN is present in low concentrations in the cell and is considered to be the limiting component of the beta-catenin destruction complex in Xenopus; this may not be the case in mammalian cells, however (Lee et al, 2003; Tan et al, 2012). Cellular levels of AXIN are regulated in part through ubiquitin-mediated turnover. E3 ligases SMURF2 and RNF146 have both been shown to play a role in promoting the degradation of AXIN by the 26S proteasome (Kim and Jho, 2010; Callow et al, 2011; Zhang et al, 2011).
Identifier: R-HSA-8948751
Species: Homo sapiens
PTEN protein stability is regulated by ubiquitin ligases, such as NEDD4, WWP2, STUB1 (CHIP), XIAP, MKRN1 and RNF146, which polyubiquitinate PTEN in response to different stimuli and thus target it for proteasome-mediated degradation (Wang et al. 2007, Van Themsche et al. 2009, Maddika et al. 2011, Ahmed et al. 2012, Lee et al. 2015, Li et al. 2015). Several ubiquitin proteases, such as USP13 and OTUD3, can remove polyubiquitin chains from PTEN and rescue it from degradation (Zhang et al. 2013, Yuan et al. 2015). TRIM27 (RFP) is an E3 ubiquitin ligase that polyubiquitinates PTEN on multiple lysines in the C2 domain of PTEN using K27 linkage between ubiquitin molecules. TRIM27 mediated ubiquitination inhibits PTEN lipid phosphatase activity, but does not affect PTEN protein localization or stability (Lee et al. 2013).
PTEN phosphorylation by the tyrosine kinase FRK (RAK) inhibits NEDD4 mediated polyubiquitination and subsequent degradation of PTEN, thus increasing PTEN half life. FRK mediated phosphorylation also increases PTEN enzymatic activity (Yim et al. 2009). Casein kinase 2 (CK2) mediated phosphorylation of the C-terminus of PTEN on multiple serine and threonine residues increases PTEN protein stability (Torres and Pulido 2001) but results in ~30% reduction in PTEN lipid phosphatase activity (Miller et al. 2002).
PREX2, a RAC1 guanine nucleotide exchange factor (GEF) can binds to PTEN and inhibit its catalytic activity (Fine et al. 2009).
Identifier: R-HSA-6807070
Species: Homo sapiens
PTEN is regulated at the level of gene transcription, mRNA translation, localization and protein stability.

Transcription of the PTEN gene is regulated at multiple levels. Epigenetic repression involves the recruitment of Mi-2/NuRD upon SALL4 binding to the PTEN promoter (Yang et al. 2008, Lu et al. 2009) or EVI1-mediated recruitment of the polycomb repressor complex (PRC) to the PTEN promoter (Song et al. 2009, Yoshimi et al. 2011). Transcriptional regulation is also elicited by negative regulators, including NR2E1:ATN1 (atrophin-1) complex, JUN (c-Jun), SNAIL and SLUG (Zhang et al. 2006, Vasudevan et al. 2007, Escriva et al. 2008, Uygur et al. 2015) and positive regulators such as TP53 (p53), MAF1, ATF2, EGR1 or PPARG (Stambolic et al. 2001, Virolle et al. 2001, Patel et al. 2001, Shen et al. 2006, Li et al. 2016).

MicroRNAs miR-26A1, miR-26A2, miR-22, miR-25, miR-302, miR-214, miR-17-5p, miR-19 and miR-205 bind PTEN mRNA and inhibit its translation into protein. These microRNAs are altered in cancer and can account for changes in PTEN levels (Meng et al. 2007, Xiao et al. 2008, Yang et al. 2008, Huse et al. 2009, Kim et al. 2010, Poliseno, Salmena, Riccardi et al. 2010, Cai et al. 2013). In addition, coding and non-coding RNAs can prevent microRNAs from binding to PTEN mRNA. These RNAs are termed competing endogenous RNAs or ceRNAs. Transcripts of the pseudogene PTENP1 and mRNAs transcribed from SERINC1, VAPA and CNOT6L genes exhibit this activity (Poliseno, Salmena, Zhang et al. 2010, Tay et al. 2011, Tay et al. 2014).

PTEN can translocate from the cytosol to the nucleus after undergoing monoubiquitination. PTEN's ability to localize to the nucleus contributes to its tumor suppressive role (Trotman et al. 2007). The ubiquitin protease USP7 (HAUSP) targets monoubiquitinated PTEN in the nucleus, resulting in PTEN deubiquitination and nuclear exclusion. PML, via an unknown mechanism that involves USP7- and PML-interacting protein DAXX, inhibits USP7-mediated deubiquitination of PTEN, thus promoting PTEN nuclear localization. Disruption of PML function in acute promyelocytic leukemia, through a chromosomal translocation that results in expression of a fusion protein PML-RARA, leads to aberrant PTEN localization (Song et al. 2008).

Several ubiquitin ligases, including NEDD4, WWP2, STUB1 (CHIP), RNF146, XIAP and MKRN1, polyubiquitinate PTEN and target it for proteasome-mediated degradation (Wang et al. 2007, Van Themsche et al. 2009, Ahmed et al. 2011, Maddika et al. 2011, Lee et al. 2015, Li et al. 2015). The ubiquitin proteases USP13 and OTUD3, frequently down-regulated in breast cancer, remove polyubiquitin chains from PTEN, thus preventing its degradation and increasing its half-life (Zhang et al. 2013, Yuan et al. 2015). The catalytic activity of PTEN is negatively regulated by PREX2 binding (Fine et al. 2009, Hodakoski et al. 2014) and TRIM27-mediated ubiquitination (Lee et al. 2013), most likely through altered PTEN conformation.

In addition to ubiquitination, PTEN also undergoes SUMOylation (Gonzalez-Santamaria et al. 2012, Da Silva Ferrada et al. 2013, Lang et al. 2015, Leslie et al. 2016). SUMOylation of the C2 domain of PTEN may regulate PTEN association with the plasma membrane (Shenoy et al. 2012) as well as nuclear localization of PTEN (Bassi et al. 2013, Collaud et al. 2016). PIASx-alpha, a splicing isorom of E3 SUMO-protein ligase PIAS2 has been implicated in PTEN SUMOylation (Wang et al. 2014). SUMOylation of PTEN may be regulated by activated AKT (Lin et al. 2016). Reactions describing PTEN SUMOylation will be annotated when mechanistic details become available.

Phosphorylation affects the stability and activity of PTEN. FRK tyrosine kinase (RAK) phosphorylates PTEN on tyrosine residue Y336, which increases PTEN half-life by inhibiting NEDD4-mediated polyubiquitination and subsequent degradation of PTEN. FRK-mediated phosphorylation also increases PTEN enzymatic activity (Yim et al. 2009). Casein kinase II (CK2) constitutively phosphorylates the C-terminal tail of PTEN on serine and threonine residues S370, S380, T382, T383 and S385. CK2-mediated phosphorylation increases PTEN protein stability (Torres and Pulido 2001) but results in ~30% reduction in PTEN lipid phosphatase activity (Miller et al. 2002).

PTEN localization and activity are affected by acetylation of its lysine residues (Okumura et al. 2006, Ikenoue et al. 2008, Meng et al. 2016). PTEN can undergo oxidation, which affects its function, but the mechanism is poorly understood (Tan et al. 2015, Shen et al. 2015, Verrastro et al. 2016).

Cite Us!