Search results for STAT1

Showing 23 results out of 250

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (4 results from a total of 17)

Identifier: R-HSA-629622
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: STAT1: P42224
Identifier: R-HSA-8950418
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: STAT1: P42224
Identifier: R-HSA-909684
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: STAT1: P42224-1
Identifier: R-HSA-909676
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: STAT1: P42224-2

Set (4 results from a total of 23)

Identifier: R-HSA-380755
Species: Homo sapiens
Compartment: cytosol
Identifier: R-HSA-909687
Species: Homo sapiens
Compartment: nucleoplasm
Identifier: R-HSA-909689
Species: Homo sapiens
Compartment: cytosol
Identifier: R-HSA-1112559
Species: Homo sapiens
Compartment: cytosol

DNA Sequence (1 results from a total of 1)

Identifier: R-HSA-8948432
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: ENSEMBL: ENSG00000115415

Reaction (4 results from a total of 122)

Identifier: R-HSA-909726
Species: Homo sapiens
Compartment: cytosol, plasma membrane
Phosphotyrosine on STAT2 acts as docking site for STAT1 molecules. STAT1 binds to phosphorylated STAT2 and this is followed by STAT1 phosphorylation on tyrosine residue 701 (Y701). These STATs recruited to the phosporylated IFNAR1 form two distinct transcriptional activator complexes, namely, IFN-alpha-activated factor (AAF) and IFN-stimulated gene factor 3 (ISGF3). AAF is a homodimer of STAT1, whereas ISGF3 is a heterotrimeric complex of STAT1, STAT2 and IRF9 (also known as p48 or ISGF3gamma) (Honda et al. 2005).
Identifier: R-HSA-909552
Species: Homo sapiens
Compartment: cytosol, plasma membrane
Kinases like Protein kinase C delta (PKC-delta) and Calcium/calmodulin-dependent protein kinase II (CaMK II ) can phosphorylate STAT1 at serine 727 (S727). This phosphorylation is not required for STAT1 homodimer formation, nuclear translocation and DNA binding. However, it is essential for the full transcriptional activation of STAT1.
Identifier: R-HSA-873917
Species: Homo sapiens
Compartment: nuclear envelope
Released GAF complex translocates to the nucleus and binds to the gamma-activated sequence (GAS) element present in the promoters of IFNG-regulated genes and induces the transcription of IFNG-responsive genes.
Identifier: R-HSA-873922
Species: Homo sapiens
Compartment: cytosol, plasma membrane
STAT1 pair recruited to the receptor complex is phosphorylated near the C-terminus at residue Y701, probably by JAK2. This phosphorylation enables the STAT1 homodimer formation which is further phosphorylated on residue S727.

Complex (4 results from a total of 69)

Identifier: R-HSA-873828
Species: Homo sapiens
Compartment: plasma membrane
Identifier: R-HSA-8983842
Species: Homo sapiens
Compartment: plasma membrane
Identifier: R-HSA-8987194
Species: Homo sapiens
Compartment: cytosol
Identifier: R-HSA-8987124
Species: Homo sapiens
Compartment: nucleoplasm

Pathway (4 results from a total of 16)

Identifier: R-HSA-909733
Species: Homo sapiens
Type I interferons (IFNs) are composed of various genes including IFN alpha (IFNA), beta (IFNB), omega, epsilon, and kappa. In humans the IFNA genes are composed of more than 13 subfamily genes, whereas there is only one IFNB gene. The large family of IFNA/B proteins all bind to a single receptor which is composed of two distinct chains: IFNAR1 and IFNAR2. The IFNA/B stimulation of the IFNA receptor complex leads to the formation of two transcriptional activator complexes: IFNA-activated-factor (AAF), which is a homodimer of STAT1 and IFN-stimulated gene factor 3 (ISGF3), which comprises STAT1, STAT2 and a member of the IRF family, IRF9/P48. AAF mediates activation of the IRF-1 gene by binding to GAS (IFNG-activated site), whereas ISGF3 activates several IFN-inducible genes including IRF3 and IRF7.
Identifier: R-HSA-937039
Species: Homo sapiens
Compartment: cytosol, plasma membrane
The role of IRAK1 kinase activity in the activation of NF-kappa-B by IL-1/TLR is still uncertain. It has been shown that a kinase-dead IRAK1 mutants can still activate NF-kappa-B. Furthermore, stimulation of IRAK1-deficient I1A 293 cells with LMP1 (latent membrane protein 1- a known viral activator of NF-kappa-B) leads to TRAF6 polyubiquitination and IKKbeta activation [Song et al 2006]. On the other hand, IRAK1 enhances p65 Ser536 phosphorylation [Song et al 2006] and p65 binding to the promoter of NF-kappa-B dependent target genes [Liu G et al 2008].

IRAK1 has also been shown to be itself Lys63-polyubiquitinated (probably by Pellino proteins, which have E3 ligase activity). Mutation of the ubiquitination sites on IRAK1 prevented interaction with the NEMO subunit of IKK complex and subsequent IL-1/TLR-induced NF-kappa-B activation [Conze et al 2008]. These data suggest that kinase activity of IRAK1 is not essential for its ability to activate NF-kappa-B, while its Lys63-polyubuquitination allows IRAK1 to bind NEMO thus facilitating association of TRAF6 and TAK1 complex with IKK complex followed by induction of NF-kappa-B.

Upon IL-1/TLR stimulation IRAK1 protein can undergo covalent modifications including phosphorylation [Kollewe et al 2004], ubiquitination [Conze DB et al 2008] and sumoylation [Huang et al 2004]. Depending upon the nature of its modification, IRAK1 may perform distinct functions including activation of IRF5/7 [Uematsu et al 2005, Schoenemeyer et al 2005], NF-kappa-B [Song et al 2006], and Stat1/3 [Huang et al 2004, Nguyen et al 2003].

Identifier: R-HSA-975144
Species: Homo sapiens
Compartment: endosome membrane, cytosol
The role of IRAK1 kinase activity in the activation of NF-kappa-B by IL-1/TLR is still uncertain. It has been shown that a kinase-dead IRAK1 mutants can still activate NF-kappa-B. Furthermore, stimulation of IRAK1-deficient I1A 293 cells with LMP1 (latent membrane protein 1- a known viral activator of NF-kappa-B) leads to TRAF6 polyubiquitination and IKKbeta activation [Song et al 2006]. On the other hand, IRAK1 enhances p65 Ser536 phosphorylation [Song et al 2006] and p65 binding to the promoter of NF-kappa-B dependent target genes [Liu G et al 2008].

IRAK1 has also been shown to be itself Lys63-polyubiquitinated (probably by Pellino proteins, which have E3 ligase activity). Mutation of the ubiquitination sites on IRAK1 prevented interaction with the NEMO subunit of IKK complex and subsequent IL-1/TLR-induced NF-kappa-B activation [Conze et al 2008]. These data suggest that kinase activity of IRAK1 is not essential for its ability to activate NF-kappa-B, while its Lys63-polyubuquitination allows IRAK1 to bind NEMO thus facilitating association of TRAF6 and TAK1 complex with IKK complex followed by induction of NF-kappa-B.

Upon IL-1/TLR stimulation IRAK1 protein can undergo covalent modifications including phosphorylation [Kollewe et al 2004], ubiquitination [Conze DB et al 2008] and sumoylation [Huang et al 2004]. Depending upon the nature of its modification, IRAK1 may perform distinct functions including activation of IRF5/7 [Uematsu et al 2005, Schoenemeyer et al 2005], NF-kappa-B [Song et al 2006], and Stat1/3 [Huang et al 2004, Nguyen et al 2003].

Identifier: R-HSA-8939902
Species: Homo sapiens
Compartment: nucleoplasm
Several transcription factors have been implicated in regulation of the RUNX2 gene transcription. Similar to the RUNX1 gene, the RUNX2 gene expression can be regulated from the proximal P2 promoter or the distal P1 promoter (reviewed in Li and Xiao 2007).
Activated estrogen receptor alpha (ESR1) binds estrogen response elements (EREs) in the P2 promoter and stimulates RUNX2 transcription (Kammerer et al. 2013). Estrogen-related receptor alpha (ERRA) binds EREs or estrogen-related response elements (ERREs) in the P2 promoter of RUNX2. When ERRA is bound to its co-factor PPARG1CA (PGC1A), it stimulates RUNX2 transcription. When bound to its co-factor PPARG1CB (PGC1B), ERRA represses RUNX2 transcription (Kammerer et al. 2013).
TWIST1, a basic helix-loop-helix (bHLH) transcription factor, stimulates RUNX2 transcription by binding to the E1-box in the P2 promoter (Yang, Yang et al. 2011). TWIST proteins also interact with the DNA-binding domain of RUNX2 to modulate its activity during skeletogenesis (Bialek et al. 2004). Schnurri-3 (SHN3) is another protein that interacts with RUNX2 to decrease its availability in the nucleus and therefore its activity (Jones et al. 2006). In contrast, RUNX2 and SATB2 interact to enhance the expression of osteoblast-specific genes (Dobreva et al. 2006). Formation of the heterodimer with CBFB (CBF-beta) also enhances the transcriptional activity of RUNX2 (Kundu et al. 2002, Yoshida et al. 2002, Otto et al. 2002).
Transcription of RUNX2 from the proximal promoter is inhibited by binding of the glucocorticoid receptor (NR3C1) activated by dexamethasone (DEXA) to a glucocorticoid receptor response element (GRE), which is also present in the human promoter (Zhang et al. 2012).
NKX3-2 (BAPX1), required for embryonic development of the axial skeleton (Tribioli and Lufkin 1999), binds the distal (P1) promoter of the RUNX2 gene and inhibits its transcription (Lengner et al. 2005). RUNX2-P1 transcription is also autoinhibited by RUNX2-P1, which binds to RUNX2 response elements in the P1 promoter of RUNX2 (Drissi et al. 2000). In contrast, binding of RUNX2-P2 to the proximal P2 promoter autoactivates transcription of RUNX2-P2 (Ducy et al. 1999). Binding of a homeodomain transcription factor DLX5, and possibly DLX6, to the RUNX2 P1 promoter stimulates RUNX2 transcription (Robledo et al. 2002, Lee et al. 2005). The homeobox transcription factor MSX2 can bind to DLX5 sites in the promoter of RUNX2 and inhibit transcription of RUNX2-P1 (Lee et al. 2005).
Translocation of RUNX2 protein to the nucleus is inhibited by binding to non-activated STAT1 (Kim et al. 2003).
Several E3 ubiquitin ligases were shown to polyubiquitinate RUNX2, targeting it for proteasome-mediated degradation: FBXW7a (Kumar et al. 2015), STUB1 (CHIP) (Li et al. 2008), SMURF1 (Zhao et al. 2003, Yang et al. 2014), WWP1 (Jones et al. 2006), and SKP2 (Thacker et al. 2016).

Icon (2 results from a total of 2)

Species: Homo sapiens
Curator: Steve Jupe
Designer: Cristoffer Sevilla
STAT1 icon
Signal transducer and activator of transcription 1
Species: Homo sapiens
Curator: Bruce May
Designer: Cristoffer Sevilla
STAT1,3,5 icon
Set of STAT1,3 and 5
Cite Us!