Pyruvate sits at an intersection of key pathways of energy metabolism. It is the end product of glycolysis and the starting point for gluconeogenesis, and can be generated by transamination of alanine. It can be converted by the pyruvate dehydrogenase complex to acetyl CoA (Reed and Hackert 1990) which can enter the TCA cycle or serve as the starting point for the syntheses of long chain fatty acids, steroids, and ketone bodies depending on the tissue and metabolic state in which it is formed. It also plays a central role in balancing the energy needs of various tissues in the body. Under conditions in which oxygen supply is limiting, e.g., in exercising muscle, or in the absence of mitochondria, e.g., in red blood cells, re-oxidation of NADH produced by glycolysis cannot be coupled to generation of ATP. Instead, re-oxidation is coupled to the reduction of pyruvate to lactate. This lactate is released into the blood, and is taken up primarily by the liver, where it is oxidized to pyruvate and can be used for gluconeogenesis (Cori 1981).
Reed, LJ, Hackert, ML
Cori, CF
© 2023 Reactome