RHOBTB1 GTPase cycle

Stable Identifier
R-HSA-9013422
Type
Pathway
Species
Homo sapiens
ReviewStatus
5/5
Locations in the PathwayBrowser
General
SVG |   | PPTX  | SBGN
Click the image above or here to open this pathway in the Pathway Browser
RHOBTB1 is an atypical member of the RHO GTPase family that is predicted not to cycle between a GTP-bound form and a GDP-bound form (Berthold et al. 2008). RHOBTB family proteins, in contrast to other RHO GTPases, possess other conserved domains in addition to the GTPase domain. The GTPase domain at the N-terminus is followed by a proline-rich region, a tandem of two BTB (broad-complex, tramtrack, bric à brac) domains, and a conserved C-terminal BACK (BTB and C-terminal Kelch) domain (Berthold et al. 2008, Ji and Rivero 2016). RHOBTB proteins can form homo- and heterodimers, but the role of dimerization in RHOBTB function is not known (Berthold et al. 2008, Ji and Rivero 2016). RHOBTB1 is highly expressed in skeletal muscle, placenta, stomach, kidney, testis, ovary, uterus and adrenal gland (Berthold et al. 2008). RHOBTB1 is a component of a signaling cascade that regulates vascular function and blood pressure (Ji and Rivero 2016). RHOBTB1 level is decreased in many cancer types and it is proposed to function as a tumor suppressor, but no mutations in RHOBTB1 have been detected in cancer (Berthold et al. 2008; Ji and Rivero 2016). RHOBTB1 localizes at early endosomes and participates in the architecture of the endosomal-lysosomal system (Long et al. 2020).
Literature References
PubMed ID Title Journal Year
27314390 Atypical Rho GTPases of the RhoBTB Subfamily: Roles in Vesicle Trafficking and Tumorigenesis

Ji, W, Rivero, F

Cells 2016
18298893 Rho GTPases of the RhoBTB subfamily and tumorigenesis

Schenkova, K, Berthold, J, Rivero, F

Acta Pharmacol. Sin. 2008
32354068 RNA Interference Screening Identifies Novel Roles for RhoBTB1 and RhoBTB3 in Membrane Trafficking Events in Mammalian Cells

Mysior, MM, Long, M, Simpson, JC, Kranjc, T

Cells 2020
Participants
Participates
Orthologous Events
Authored
Reviewed
Created
Cite Us!