MPST transfers sulfur from sulfanegen to HCN to form HSCN

Stable Identifier
R-HSA-9013533
Type
Reaction [transition]
Species
Homo sapiens
Compartment
ReviewStatus
5/5
Locations in the PathwayBrowser
General
SVG |   | PPTX  | SBGN
Click the image above or here to open this reaction in the Pathway Browser
The layout of this reaction may differ from that in the pathway view due to the constraints in pathway layout
Cyanide is a potent metabolic poison which binds to and inhibits cytochrome c oxidase (cytochrome a3), resulting in the rapid inhibition of oxidative phosphorylation (Hall & Rumack 1986). As a result, cells can't utilise oxygen, giving rise to central nervous system, cardiovascular and respiratory dysfunction that can result in permanent neurological defects and, in severe cases, death. At body's pH, cyanide exists mainly in the undissociated form hydrogen cyanide (HCN) which can cross cellular and subcellular membranes such as the blood brain barrier and mitochondrial membranes. Although humans are not typically exposed to cyanide, cyanide intoxication can occur after smoke inhalation, industrial exposure, ingestion of cyanogenic substances and cyanogenic food sources such as cassava. Antidotes for HCN poisoning cases include HCN binders, sulfur donors that convert HCN to the less toxic thiosulfate and competitors for HCN enzymatic binding sites such as NO (Petrikovics et al. 2015).

Two pathways in mammals are able to detoxify cyanide as thiocyanate via transfer of a sulfur atom: thiosulfate sulfurtransferase (TST aka rhodanese) in mitochondria and 3-mercaptopyruvate sulfurtransferase (MPST aka 3MST) in cytosol and mitochondria. 3MPYR has been investigated for the potential treatment of HCN poisoning but its half life is very short, being rapidly metabolised when given intravenously (Nagahara & Sawada 2003). Also, it is a metabolite of cysteine metabolism but cysteine is present in low amounts in the brain and heart, limiting the ability of MPST to be effective in acute HCN poisoning. The pro-drug sulfanegen is the hemithioacetal cyclic dimer of 3MPYR and has been demonstrated to be effective against HCN poisoning in animal studies (Brenner et al. 2010, Belani et al. 2012). Sulfanegen provides the sulfur atom for the transsulfuration of HCN by MPST (Belani et al. 2012). HSCN can be excreted in urine via the kidneys (Hamel 2011). In a mass exposure scenario (such as terrorism or industrial accident), a rapidly-acting antidote that can be administered quickly to a large number of people is essential; sulfanegen can be rapidly administered by intramuscular injection (Patterson et al. 2016).
Literature References
PubMed ID Title Journal Year
12871026 Do antidotes for acute cyanide poisoning act on mercaptopyruvate sulfurtransferase to facilitate detoxification?

Li, Q, Nagahara, N, Sawada, N

Curr. Drug Targets Immune Endocr. Metabol. Disord. 2003
Participants
Participates
Catalyst Activity

3-mercaptopyruvate sulfurtransferase activity of MPST [mitochondrial matrix]

Orthologous Events
Authored
Reviewed
Created
Cite Us!