Search results for CYP2E1

Showing 10 results out of 12

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (1 results from a total of 1)

Identifier: R-HSA-52681
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
Primary external reference: UniProt: CYP2E1: P05181

Pathway (1 results from a total of 1)

Identifier: R-HSA-211999
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane, endoplasmic reticulum lumen
CYP2E1 can metabolize and activate a large number of solvents and industrial monomers as well as drugs. This quality of CYP2E1 may make it an important determinant of human susceptibility to the toxic effects of industrial and environmental chemicals. Typical CYP2E1 substrates include acetaminophen, benzene, CCl4, halothane, ethanol and vinyl chloride. CYP2E1 contributes to oxidative stress by producing oxidising species called reactive oxygen species (ROS) which can lead to damage to mitochondria, DNA and initiate lipid peroxidation or even cell death.

Reaction (7 results from a total of 9)

Identifier: R-HSA-9027321
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
In macrophages, cytochrome P450s (CYPs) are likely to 21-hydroxylate 14(R)-hydroxy-docosahexaenoic acid (14(R)-HDHA) to 14(R),21(R)-dihydroxy-docosahexaenoic acid (14(R),21(R)-diHDHA) and 14(R),21(S)-diHDHA (Lu et al. 2010). In human skin, CYP1A1, 2B6/7, 2E1, 3A4/7, and 3A5 proteins have been identified and shown to possess catalytic activities (Swanson 2004). CYP2E1 is able to generate 19-hydroxyleicosatetraenoic acid, an ω-1 hydroxylation intermediate of arachidonic acid (Laethem et al. 1993) therefore, it might also ω-1 hydroxylate 14(R)-HDHA in human skin.
Administration of 14,21-diHDHA stereoisomers to splinted excisional wounded mice demonstrated their involvement in wound pro-healing processes (Lu et al. 2010).
Identifier: R-HSA-9027302
Species: Homo sapiens
Compartment: cytosol, endoplasmic reticulum membrane
In macrophages, cytochrome P450s (CYPs) are likely to 21-hydroxylate 14(S)-hydroxy-docosahexaenoic acid (14(S)-HDHA) to 14(S),21(R)-dihydroxy-docosahexaenoic acid (14(S),21(R)-diHDHA) and 14(S),21(S)-diHDHA (Lu et al. 2010, Tian et al. 2011a, 2011b). In human skin, CYP1A1, 2B6/7, 2E1, 3A4/7 and 3A5 proteins have been identified and shown to possess catalytic activities (Swanson 2004). CYP2E1 is able to generate 19-hydroxyleicosatetraenoic acid, an ω-1 hydroxylation intermediate of arachidonic acid (Laethem et al. 1993) therefore, it might also ω-1 hydroxylate 14(S)-HDHA in human skin.
14(S),21(R)-diHDHA was shown to counteract the diabetic impairment of macrophage pro-healing functions in an autocrine/paracrine fashion, enhancing wound healing (Lu et al. 2010, Tian et al. 2011a, 2011b).
Identifier: R-HSA-76397
Species: Homo sapiens
Compartment: endoplasmic reticulum lumen, endoplasmic reticulum membrane
N-acetyl-p-benzoquinone imine (NAPQI) is the reactive intermediate of the analgesic and antipyretic, acetaminophen (INN, paracetamol). At usual doses, NAPQI is quickly detoxified by conjugation but in overdose situations, NAPQI is extremely toxic to liver tissue.
Identifier: R-HSA-143468
Species: Homo sapiens
Compartment: endoplasmic reticulum lumen, endoplasmic reticulum membrane
The MEOS (microsomal ethanol oxidizing system) is an accessory pathway in the liver which increases in activity on chronic alcohol induction. The MEOS utilizes a cytochrome P450 which has since been deciphered to be CYP2E1, an ethanol-inducible form of P450. CYP2E1 also increases acetaldehyde formation and free radicals which can initiate lipid peroxidation. CYP2E1 can also activate many over-the-counter medicines and solvents to toxic metabolites and deplete retinoids resulting in their depletion and deletrious effects. This is because, being a cytochrome P450 and using NADPH and oxygen, it has the ability to biotransform drugs when it has been induced by ethanol.
Identifier: R-HSA-76416
Species: Homo sapiens
Compartment: smooth endoplasmic reticulum
Benzene is an occupational and environmental toxicant and is implicated in myelogenous leukemia. For toxicity to occur, benzene is oxidised to phenol and subsequently to catechol and hydroquinone. CYP2E1 is the enzyme responsible for oxidation of benzene to phenol.
Identifier: R-HSA-76354
Species: Homo sapiens
Compartment: smooth endoplasmic reticulum
CYP2E1 can catalyze the oxidation of the vinyl halide vinyl chloride to the epoxide 2-chloroethylene oxide. The epoxide is very unstable and rearranges quickly to 2-chloroacetaldehyde. Both these products can interact with DNA and proteins.
Identifier: R-HSA-76475
Species: Homo sapiens
Compartment: smooth endoplasmic reticulum
The volatile anesthetic halothane can undergo CYP2E1-catalyzed oxidation to form a reactive intermediate which can acetylate liver proteins. These proteins can then stimulate an immune reaction that mediates severe hepatic necrosis ("halothane hepatitis").

Set (1 results from a total of 1)

Identifier: R-HSA-2990860
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
Cite Us!