Search results for UBA52

Showing 13 results out of 41

×

Species

Types

Compartments

Reaction types

Search properties

Species

Types

Compartments

Reaction types

Search properties

Protein (10 results from a total of 38)

Identifier: R-HSA-8943092
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-939236
Species: Homo sapiens
Compartment: endocytic vesicle membrane
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-939169
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-8943067
Species: Homo sapiens
Compartment: endoplasmic reticulum membrane
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-939851
Species: Homo sapiens
Compartment: plasma membrane
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-3095931
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-6782658
Species: Homo sapiens
Compartment: nucleoplasm
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-5689141
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-8869043
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: UBA52: P62987
Identifier: R-HSA-72476
Species: Homo sapiens
Compartment: cytosol
Primary external reference: UniProt: UBA52: P62987

Reaction (1 results from a total of 1)

Identifier: R-HSA-8853514
Species: Homo sapiens
Compartment: cytosol
The UBA52 precursor protein contains the ribosomal protein L40 and ubiquitin (UBA52 residues 1 to 76) which are released by proteolysis. Any of the proteases UCHL3, USP7, or USP9X can catalyze the proteolysis reaction (Larsen et al. 1998, Grou et al. 2015).

Pathway (2 results from a total of 2)

Identifier: R-HSA-8866652
Species: Homo sapiens
Ubiquitin monomers are processed from larger precursors and then activated by formation of a thiol ester bond between ubiquitin and a cysteine residue of an E1 activating enzyme (UBA1 or UBA6, Jin et al. 2007). The ubiquitin is then transferred to the active site cysteine residue of an E2 conjugating enzyme (reviewed in van Wijk and Timmers 2010, Kleiger and Mayor 2014, Stewart et al. 2016). Precursor proteins containing multiple ubiquitin monomers (polyubiquitins) are produced from the UBB and UBC genes. Precursors containing a single ubiquitin fused to a ribosomal protein are produced from the UBA52 and RPS27A genes. The proteases OTULIN and USP5 are very active in polyubiquitin processing, whereas the proteases UCHL3, USP7, and USP9X cleave the ubiquitin-ribosomal protein precursors yielding ubiquitin monomers (Grou et al. 2015). Other enzymes may also process ubiquitin precursors. A resultant ubiquitin monomer is activated by adenylation of its C-terminal glycine followed by conjugation of the C-terminus to a cysteine residue of the E1 enzymes UBA1 or UBA6 via a thiol ester bond (Jin et al. 2007, inferred from rabbit homologues in Haas et al. 1982, Hershko et al. 1983). The ubiquitin is then transferred from the E1 enzyme to a cysteine residue of one of several E2 enzymes (reviewed in van Wijk and Timmers 2010, Stewart et al. 2016).
Identifier: R-HSA-8852135
Species: Homo sapiens
Ubiquitin is a small, 76 amino acid residue protein that is conjugated by E3 ubiquitin ligases to other proteins in order to regulate their function or degradation (enzymatic cascade reviewed in Neutzner and Neutzner 2012, Kleiger and Mayor 2014, structures and mechanisms of conjugating enzymes reviewed in Lorenz et al. 2013). Ubiquitination of target proteins usually occurs between the C-terminal glycine residue of ubiquitin and a lysine residue of the target, although linkages with cysteine, serine, and threonine residues are also observed (reviewed in Wang et al. 2012, McDowell and Philpott 2013).
Ubiquitin must first be processed from larger precursors and then activated by formation of a thiol ester bond between ubiquitin and an E1 activating enzyme (UBA1 or UBA6) and transfer to an E2 conjugating enzyme before being transferred by an E3 ligase to a target protein. Precursor proteins containing multiple ubiquitin monomers (polyubiquitins) are produced from the UBB and UBC genes; precursors containing a single ubiquitin monomer and a ribosomal protein are produced from the UBA52 and RPS27A genes. Many proteases (deubiquitinases) may potentially process these precursors yielding monomeric ubiquitin. The proteases OTULIN and USP5 are particularly active in cleaving the polyubiquitin precursors, whereas the proteases UCHL3, USP7, and USP9X cleave the ubiquitin-ribosomal protein precursors yielding ubiquitin monomers (Grou et al. 2015). A resultant ubiquitin monomer is activated by adenylation of the C-terminal glycine followed by conjugation of the C-terminus to a cysteine residue of the E1 enzymes UBA1 or UBA6 via a thiol ester bond. The ubiquitin is then transferred from the E1 enzyme to a cysteine residue of one of several E2 enzymes (reviewed in van Wijk and Timmers 2010, Stewart et al. 2016). Through a less well characterized mechanism, E3 ubiquitin ligases then bring a target protein and the E2-ubiquitin conjugate into proximity so that the ubiquitin is transferred via formation of an amide bond to a particular lysine residue (or, in rarer cases, a thiol ester bond to a cysteine residue or an ester bond to a serine or threonine residue) of the target protein (reviewed in Berndsen and Wolberger 2014). Based on protein homologies, families of E3 ubiquitin ligases have been identified that include RING-type ligases (reviewed in Deshaies et al. 2009, Metzger et al. 2012, Metzger et al. 2014), HECT-type ligases (reviewed in Rotin et al. 2009, Metzger et al. 2012), and RBR-type ligases (reviewed in Dove et al. 2016). A subset of the RING-type ligases participate in CULLIN-RING ligase complexes (CRLs which include SCF complexes, reviewed in Lee and Zhou 2007, Genschik et al. 2013, Skaar et al. 2013, Lee et al. 2014).
Some E3-E2 combinations catalyze mono-ubiquitination of the target protein (reviewed in Nakagawa and Nakayama 2015). Other E3-E2 combinations catalyze conjugation of further ubiquitin monomers to the initial ubiquitin, forming polyubiquitin chains. (It may also be possible for some E3-E2 combinations to preassemble polyubiquitin and transfer it as a unit to the target protein.) Ubiquitin contains several lysine (K) residues and a free alpha amino group to which further ubiquitin can be conjugated. Thus different types of polyubiquitin are possible: K11 linked polyubiquitin is observed in endoplasmic reticulum-associated degradation (ERAD), K29 linked polyubiquitin is observed in lysosomal degradation, K48 linked polyubiquitin directs target proteins to the proteasome for degradation, whereas K63 linked polyubiquitin generally acts as a scaffold to recruit other proteins in several cellular processes, notably DNA repair (reviewed in Komander et al. 2009). Ubiquitination is highly regulated (reviewed in Vittal et al. 2015) and affects all cellular processes including DNA damage response (reviewed in Brown and Jackson 2015), immune signaling (reviewed in Park et al. 2014, Lutz-Nicoladoni et al. 2015), and regulation of normal and cancerous cell growth (reviewed in Skaar and Pagano 2009, Yerlikaya and Yontem 2013, Strikoudis et al. 2014).
Cite Us!